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There is widespread agreement that effective teachers have unique knowledge of
students’ mathematical ideas and thinking. However, few scholars have focused on
conceptualizing this domain, and even fewer have focused on measuring this knowl-
edge. In this article, we describe an effort to conceptualize and develop measures of
teachers’ combined knowledge of content and students by writing, piloting, and
analyzing results from multiple-choice items. Our results suggest partial success in
measuring this domain among practicing teachers but also identify key areas around
which the field must achieve conceptual and empirical clarity. Although this is
ongoing work, we believe that the lessons learned from our efforts shed light on
teachers’ knowledge in this domain and can inform future attempts to develop
measures. 

Key words: Assessment; Item-response theory; Pedagogical knowledge; Professional
development; Teacher knowledge

In the years following Shulman’s seminal 1986 address introducing the notion of
pedagogical content knowledge (PCK), most scholars and policymakers have
assumed that such knowledge not only exists but also contributes to effective
teaching and student learning. Standards documents—including those of NCTM and
the National Board for Professional Teaching Standards (NBPTS)—note the impor-
tance of teachers holding knowledge of “students as learners” (NCTM, 2000, p. 17)
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and being able to recognize the “preconceptions and background knowledge that
students typically bring to each subject” (NBPTS, 2006, p. vi). Preservice programs
and professional development opportunities often focus on developing teachers’
knowledge of and skill in understanding students’ mathematical work and thinking. 

Yet scholarly evidence about what PCK is, and how it relates to students’ math-
ematical outcomes, is actually quite thin. Although well-designed research has
shown that professional development focused around such knowledge results in
changed classroom performance and improved student learning, these results are
limited to a handful of studies in relatively narrow content areas (Carpenter,
Fennema, Peterson, Chiang, & Loef, 1989; Cobb et al., 1991; Franke, Carpenter,
& Levi, 2001; Saxe, Gearhardt, & Nasir, 2001). And beyond Shulman’s original
formulation, there have been few attempts to develop concise yet well-specified
descriptions of what teachers know in this domain. Further, no large-scale study
has related teachers’ PCK to students’ gains. Although what we call “knowledge
of content and students,” or teachers’ knowledge of students’ mathematical thinking
and learning, is widely believed to be an important component of teacher knowl-
edge, it remains underspecified, and its relationship to student achievement
undemonstrated.

We argue that these gaps stem from a two-fold problem in mathematics educa-
tion research. First, we lack studies that demonstrate that teachers possess this knowl-
edge apart from knowledge of the content itself. Second, the field has not devel-
oped, validated, and published measures to assess the many programs designed to
improve teacher knowledge in this domain and to understand how this knowledge
relates to student achievement. 

This article chronicles a first effort to conceptualize, develop, and test measures
of teachers’ knowledge of content and students (KCS). We do so in a framework
that ultimately connects all three pieces of this work, tying the conceptualization
directly to the specification of items, and tying results from field tests back to
strengths and weaknesses of the initial conceptualization. Although this is ongoing
work, we chose to write about it at this particular juncture because our efforts might
be instructive to others trying to conceptualize, identify, measure, and ultimately
improve teachers’ PCK. This work might also be useful to those engaged in parallel
work, such as measuring teachers’ ability to design effective instruction and
measuring teachers’ skills in motivating students to learn mathematics. Finally, this
work is an important precursor to designing and implementing large-scale studies
that assess whether teachers’ knowledge of mathematics and students contributes
to student learning. As economists and others have noted, teacher characteristics
such as credentials, experience, and even general mathematical knowledge provide
only limited explanations for wide variations in student gain scores across class-
rooms (for a review of the economics literature, see Wayne & Youngs, 2003; for
studies specifically focused on mathematics, see Begle, 1972, 1979; Monk, 1994).
Educators, and mathematics educators in particular, need to do more to help explain
this phenomenon—beginning with developing new, more sensitive instruments that
capture key teacher characteristics. 
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We argue that two sets of criteria are vital to building such measures. The first
set of criteria concerns the conceptualization of the domain. Researchers should
begin by proposing a construct, taking care to elaborate the theoretical or empir-
ical basis for the construct, delineate the boundaries of the construct, and specify
how it is related to other similar constructs. Each of the above should provide rela-
tively specific information regarding the nature of knowledge and how it might be
assessed. As part of this work, researchers should consider the cognitive process
involved in this domain, particularly with regard to how measurement should
proceed. Measures of facts, for instance, will look different from measures of
reasoning processes; measures of knowledge that is highly contextually bound will
look quite different from measures of knowledge that is common across a wide range
of settings. 

Second, in any measures development effort, data yielded from pilots of the items
must be analyzed to assess whether the conceptualization is correct and adequate
and to determine whether the instruments meet several measurement-related criteria.
These criteria include that construct-identification methods (e.g., factor analysis)
demonstrate that the construct is clearly present and separable from other related
constructs; that the items adequately measure the population under study, in the sense
that they provide a reliable estimate of individual knowledge across a range of levels
of expertise; and that validation work begin to assess, using nonpsychometric
methods, whether the items tap the intended construct. 

These criteria are based on those found in the AERA/APA/NCME Standards for
Educational and Psychological Testing (1999) and informed by current debates in
the field of educational measurement and evaluation (e.g., Kane, 2004). We believe
that meeting these criteria is critical to yielding credible measures. Yet this kind of
effort is seldom launched (Messick, 1988). All too often, scholars report results from
locally developed measures without reference to their conceptualization, design,
psychometric, and validation work. We also argue that fulfilling these criteria can
yield important information about the constructs themselves and the populations
under study. 

This article follows an unusual format. We begin by discussing our conceptual-
ization of the domain of KCS; we regard this conceptualization as a hypothesis to
be explored in the empirical portions of the article. We then describe our efforts to
write items and outline the methods used in piloting, analyzing, and validating these
items. In the third section, we assess whether our conceptualization is accurate,
asking whether KCS exists in the general population of teachers and, if so, how we
might describe it. We also ask whether the measures have sufficient validity and
reliability for use in research studies. 

CONCEPTUALIZING THE DOMAIN

Our project seeks to understand and measure mathematical knowledge for
teaching—the mathematical knowledge that teachers use in classrooms to produce
instruction and student growth. Our work to date has focused mostly on teachers’
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subject matter knowledge—not only knowledge of the actual topics they teach but
the special forms of mathematical knowledge that are particular to the profession
of teaching (Ball, Hill, & Bass, 2005; Hill, Rowan, & Ball, 2005). In addition to
subject matter knowledge, however, we believe that teachers might also possess
additional forms of knowledge useful to their work in classrooms. Below, we
describe how we conceptualized one such strand of this knowledge, taking care to
discuss its theoretical and empirical justification, to delineate its boundaries and rela-
tionships to other constructs, and to discuss the measurement implications of our
conceptualization. 

Defining KCS

We propose to define KCS as content knowledge intertwined with knowledge
of how students think about, know, or learn this particular content. KCS is used in
tasks of teaching that involve attending to both the specific content and something
particular about learners, for instance, how students typically learn to add fractions
and the mistakes or misconceptions that commonly arise during this process. In
teaching students to add fractions, a teacher might be aware that students, who often
have difficulty with the multiplicative nature of fractions, are likely to add the numer-
ators and denominators of two fractions. Such knowledge might help her design
instruction to address this likely issue. In thinking about how students might solve
a problem like 56+9, to use another example, a teacher might know that some
students will count on, some will add 10 and then compensate by subtracting 1, and
still others will use a standard algorithm. 

This definition is based on both theoretical and empirical work on teacher
knowledge. To start, KCS is a primary element in Shulman’s (1986) PCK. In this
view, such knowledge is composed of “an understanding of what makes the
learning of specific topics easy or difficult: the conceptions and preconceptions
that students of different ages and backgrounds bring with them to the learning of
those most frequently taught topics and lessons” (1986, p. 9). Shulman noted that
research on students’ thinking and ideas provides a critical foundation for peda-
gogical knowledge.

In mathematics, the work of Fuson (1992), Kamii (1985), and Carpenter,
Fennema, Franke, and Empson (1999) in the areas of number and operation, Behr,
Harel, Post, and Lesh (1992), and Lamon (1999) in rational numbers, and Carpenter,
Franke, and Levi (2003) in algebra exemplify research on how students solve
problems, develop mathematically, and encounter difficulties with particular aspects
of subject matter. Following Shulman, we used these and other content-specific
studies of student learning as the foundation for the measures described below. We
chose not to ground our measure in overarching and thus more generic theories of
learning (e.g., constructivism or behaviorism) for two reasons. First, our definition
of KCS suggests that we rely on empirical evidence regarding how students learn.
Theory is, literally, theory, and is thus propositional and arguable; “correct” answers
based on theory would be difficult to defend, for several theories of student learning
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legitimately compete. Teachers’ answers would be indicative of views of student
learning, or knowledge of such views. Second, theories of student learning are also
necessarily abstracted from specific instances, making them difficult to use in
item-writing. By contrast, we wanted to measure teachers’ knowledge with demon-
strated developmental patterns and problems with specific material. 

Evidence for KCS

The strongest empirical evidence for KCS comes from experimental and other
tightly controlled professional development studies in which teachers investigated
how students learn particular subject matter, such as whole number operations or
fractions (Carpenter et al., 1989; Cobb et al., 1991; Franke & Kazemi, 2001; Saxe
et al., 2001). When teachers studied this material, their classroom practices changed
and student learning was improved over that of teachers in control or comparison
groups. This suggests that such knowledge is useful to teachers’ disciplinary
teaching. However, it says nothing about whether teachers who are not involved
in such professional development possess such knowledge and, if so, what shape
it takes. It is also possible, in many of these programs, that teachers learned some
mathematical content itself. In this case, improvements in subject matter knowl-
edge, rather than KCS, would be driving student achievement. 

In fact, there are only a limited number of investigations into what “average”
teachers know about students’ mathematical thinking. A search of “pedagogical
content knowledge” in the Educational Abstracts database led to only one study
directly on this point. Carpenter, Fennema, Peterson, and Carey (1988) explored
40 first-grade teachers’ knowledge of children’s solutions of addition and subtrac-
tion word problems. Their result was slightly paradoxical: Although most teachers
could distinguish between problem types and predict which would be relatively
more difficult for students to solve, much of this knowledge was tacit. For instance,
teachers had difficulty articulating why specific problems would be difficult for
students. The authors concluded that participants’ knowledge was not organized
into a coherent network connecting the mathematics problems to student solution
strategies. 

Two other studies explored preservice, rather than in-service, teachers’ under-
standings of student learning. In a study of division of fractions, Tirosh (2000) found
that prospective elementary teachers in Israel were familiar with common arithmetic
bugs (e.g., inverting the dividend rather than the divisor) but unfamiliar with
conceptual errors made by students, including the overgeneralization of whole
number rules to fractions (e.g., dividing always makes numbers smaller). In a
study that asked preservice teachers to evaluate the difficulty of algebra problems,
Nathan and Petrosino (2003) argued that teachers with advanced subject-matter
knowledge of algebra were likely to believe that students find word problems
more difficult than symbolic problems. This result contradicts research on actual
student learning conducted by Nathan and others (e.g., Koedinger & Nathan, 2004).
The thinness of teacher knowledge revealed in these studies may result from the
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population under study, however, and not reflect the true knowledge level of prac-
ticing teachers.

These studies suggest intriguing hypotheses—for instance, that teachers’ knowl-
edge of students is propositional and discrete rather than richly connected to the
underlying mathematics and conceptions of student learning. However, none of
these studies explicate the domain of teacher knowledge as carefully as necessary
for large-scale measurement and modeling vis-à-vis student achievement, as many
hope to eventually accomplish. This interest led to our own efforts to conceptualize
KCS; the content of these studies, however, helped shape our definition. 

Relating KCS to Other Forms of Teacher Knowledge

Our criteria suggest that an important element in conceptualizing a domain is
delineating its boundaries and relating it to similar constructs. Figure 1 shows our
proposed model of mathematical knowledge for teaching (MKT) and can be used
to demonstrate how KCS relates to both subject matter knowledge and PCK. Each
of the six portions of the oval is a proposed strand of MKT. The left side of the oval,
labeled “subject matter knowledge,” contains two strands that lie outside Shulman’s
popular conceptualization of PCK: common content knowledge (CCK), roughly
described as knowledge that is used in the work of teaching in ways in common with
how it is used in many other professions or occupations that also use mathematics,
and specialized content knowledge (SCK), or the mathematical knowledge that
allows teachers to engage in particular teaching tasks, including how to accurately

Figure 1. Domain map for mathematical knowledge for teaching.
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represent mathematical ideas, provide mathematical explanations for common
rules and procedures, and examine and understand unusual solution methods to prob-
lems (Ball et al., 2005). CCK is what Shulman likely meant by his original subject
matter knowledge; SCK is a newer conceptualization. However, both are mathe-
matical knowledge; no knowledge of students or teaching is entailed. The right side
of the oval represents strands associated with Shulman’s proposed PCK and
contains KCS, knowledge of content and teaching (KCT), and knowledge of
curriculum. KCS is thus a subset of PCK, which itself is a subset of the larger
construct MKT. KCS, however, is separable from knowledge of teaching moves—
for example, how best to build on student mathematical thinking or how to remedy
student errors. KCS also does not entail knowledge of curriculum materials. Instead,
it is focused on teachers’ understanding of how students learn particular content.

Thus, a key part of our conceptualization holds that KCS is distinct from teachers’
subject matter knowledge. A teacher might have strong knowledge of the content
itself but weak knowledge of how students learn the content or vice versa. This
distinction has important implications for the construction of assessments in this
domain, as described next. 

Developing Criteria for Developing Measures

Having outlined the theoretical and empirical basis for KCS and discussed its rela-
tionship to similar constructs, we turn now to developing the notion further for the
purpose of measurement. In keeping with the conceptual distinction between KCS
and subject matter knowledge, we defined the KCS domain by stipulating that in
order to analyze an item and arrive at their answer, respondents should use knowl-
edge of students’ thinking around particular mathematics topics, rather than purely
their own mathematical knowledge, test-taking skills, or other processes. Because
KCS is an amalgam of subject matter knowledge and knowledge of students, we
expect that teachers might also invoke mathematical knowledge or engage in math-
ematical reasoning in order to interpret students’ thinking around these topics.
However, they should not solely engage in mathematical reasoning when answering
these items—they must also invoke knowledge of students. 

Further developing KCS for measurement opened several debates as to what
should be in the domain. One debate concerns whether the established literature on
student learning should be the only basis for items. It seems reasonable that teachers
might have KCS not yet discovered by academics, and, in keeping with this theory,
we included the knowledge that observant teachers might glean from working with
students, but that have not been codified in the literature. On the other hand, such
knowledge has by definition not been codified, making the process of actually
writing items based on this knowledge hazardous. How would we know that what
item-writers had observed in classrooms held true generally? The result was only
a small number of such items.

A second debate concerns whether to measure teachers’ recognition or recall of
topics in this domain, such as “knowing that” students tend to develop in a certain
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way or make particular mistakes or whether to measure teachers’ ability to reason
about student work. Because we were working from a view that KCS stems in large
part from the educational psychology literature, we erred on the side of items that
tap established knowledge. As we will report below, cognitive interviews with
teachers raised questions about this assumption. 

Throughout the early conceptualization of these items, we struggled with how
much to contextualize the KCS items. If Shulman and others are correct in thinking
that educational psychologists have uncovered regularities in student mathematical
learning and errors, these regularities should appear independently of the teaching
methods or curriculum materials used. In addition, we quickly saw that adding even
a modest context (e.g., naming specific curriculum materials or describing previous
lessons) not only made the items intolerably long but also might disadvantage
teachers not familiar with particular materials or techniques. In our pilot, then, KCS
was centered on the development and errors made by the modal U.S. student, regard-
less of the curriculum materials, instructional techniques, and other mathematical
influences the student might have encountered. This contextual independence is a
key, and perhaps problematic, feature of our conceptualization of knowledge in this
domain. 

Our conceptualization of KCS will, of course, differ from others’. However, we
argue that by being explicit in this formulation, we provide both a foundation for
our measures development work and a basis for future discussions about the nature
of teacher knowledge. We turn now to how we operationalized this conceptual-
ization into items. 

WRITING ITEMS AND GATHERING DATA 
TO TEST OUR CONCEPTUALIZATION

An important phase in our measures development project was moving the concep-
tualization of the domain into practice—writing items and testing them with large
groups of teachers. With data in hand, we then needed to apply our measurement
criteria, searching for confirmation that we were, indeed, measuring a real construct
distinct from teachers’ general subject matter or pedagogical knowledge and that
our measures met basic psychometric criteria. In this section, we discuss the process
of writing items, determining what evidence to gather to evaluate the measurement
criteria, and collecting and analyzing data. 

Translating the Conceptualization Into Items

Once the larger domain map had been set, we began writing multiple-choice items
based on the literature cited previously and on our own classroom experiences. We
chose the multiple-choice format because one of the projects for which we were
designing items included over 5,000 teachers, many of whom responded to the items
multiple times over a period of 3 years. In this context, open-response items, which
entail significant “grading” of answers, were not feasible. In developing items, we
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found that it was helpful to think about what mathematically able individuals who
do not teach children would not know. For instance, although professional mathe-
maticians would know how to produce a definition of even numbers, multiply a two-
digit number by a one-digit number, and write five hundred and twenty-six as 526,
they may not know the grade levels at which students, on average, master these ideas
and tasks. They are also unlikely to be familiar with common errors that students
make while developing proficiency with these ideas and procedures. 

As we progressed, we saw that our items tended to fall into four major categories:

• Common student errors: identifying and providing explanations for errors, having
a sense for what errors arise with what content, etc.

• Students’ understanding of content: interpreting student productions as sufficient
to show understanding, deciding which student productions indicate better under-
standing, etc.

• Student developmental sequences: identifying the problem types, topics, or
mathematical activities that are easier/more difficult at particular ages, knowing
what students typically learn “first,” having a sense for what third graders might
be able to do, etc.

• Common student computational strategies: being familiar with landmark numbers,
fact families, etc.

The Appendix contains four sample items. These items are imperfect; statistical
analyses showed they were not sufficiently related to the construct measured by the
majority of piloted items to retain in our item pool. The reader may be able to see
why these items failed just by reading them. They are presented here, however, to
give a sense for how we represented the four major categories in item-writing. 

In item 1, teachers are asked to provide the most reasonable explanation for
Bonny’s error. Although Bonny can count out 23 checkers serially, she does not
understand that the “2” in 23 indicates two groups of ten, or 20 checkers. Evidence
suggests that although Bonny understands how large 23 is (she can count and repre-
sent 23 serially), she does not understand the meaning of the places in the number
23. This misunderstanding has been documented as common to children in the early
elementary grades (Kamii, 1985, p. 61) and may be quite familiar to teachers expe-
rienced with working with students in this particular area. 

In item 2, Mrs. Jackson must analyze three students’ work on multidigit addition
problems to determine who has made the same error. Students (I) and (II) have made
the same error, carrying a 10 instead of a 20; student (III) has failed to add numbers
in the ones column correctly. Both errors are common, according to the “buggy algo-
rithm” literature and teachers interviewed for this project; as well, diagnosing
student errors in computation is a common task of teaching. 

In item 3, Mr. Fitzgerald intends to design an assignment that would show him
whether students can correctly order decimals. We intended here that Mr. Fitzgerald
would recognize that students will be able to put options (a) and (b) in order
correctly while ignoring the decimal point. Such students, according to Resnick and
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colleagues (1989), are applying whole number rules to decimals. Only option (c)
would require students to understand, for instance, that .565 is a smaller number
than 4.25 to order the decimals correctly. 

Finally, item 4 is an open-ended item that asks teachers to explain Jill’s incor-
rect answer to the subtraction problem 51 – 18. This item was not piloted as part
of our large-scale measures development but instead included as part of our
cognitive interviews (see below), both to glean information on how the format
of an item might affect its performance and to develop response choices for the
item. To get this item correct, teachers would have to recognize that Jill
“subtracted up” (8 – 1 = 7), rather than trading tens for ones. This error has been
identified as a common “buggy algorithm” by the cognitive psychology litera-
ture on this topic (Ashlock, 2002; VanLehn, 1989). 

Collecting and Using Data to Test Our Conceptualization

At the outset of this article, we argued that any measurement effort must collect
and use data to test the conceptualization of the measures, to determine whether the
measures do in fact differentiate well among individuals, and to perform validation
work. In our case, this effort took several directions. At a minimum, we felt we
needed to collect data from large samples of teachers to conduct construct identi-
fication procedures and reliability analyses. Because we collected this data as part
of an evaluation, it also allowed us to complete a related validity check: determining
whether teachers’ growth on our measures is sensitive to their reports of learning
about how students learn mathematics. Later, we added cognitive interviews to
provide checks on our assumption that teachers use knowledge of students to
answer the items.

Construct identification and scaling. We piloted the items in California’s
Mathematics Professional Development Institutes (MPDIs), where our larger set
of measures (both around subject matter knowledge and KCS) served as part of the
evaluation of that program. Initiated in 2000, the MPDIs involved both mathe-
maticians and mathematics educators in the design and implementation of content-
focused, extended learning opportunities for teachers. Teachers attended summer
programs of 1 to 3 weeks’ duration (between 40 and 120 hours), participated in up
to 80 hours of school-year follow-up, and received stipends of approximately
$1500 for their participation. 

Although a focus on student learning of mathematics was only a tertiary goal of
the MPDIs, where the main focus was on improving teachers’ subject matter
knowledge, visits to several MPDIs over the course of this investigation revealed
that some had, in fact, included a focus on student learning of content as part of their
curriculum. In one site visited, for instance, teachers examined student computa-
tional work for errors, explained those errors, and discussed how they would
remedy them in teaching. In another, teachers studied the literature describing which
problems students found difficult and easy and examined methods that students
might use to solve various types of problems. In still other sites, teachers viewed
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videotape of students solving problems and examined student work. However, work
on student thinking and learning was not universal. In several other sites observed,
no focus on student learning was apparent. This variation is actually to our benefit,
as we can use it to examine the impact of different amounts of opportunity to learn
these topics on teachers’ KCS performance.

By legislative design, every teacher attending an elementary number and oper-
ations MPDI was to have completed a pre-post evaluation form. These forms were
designed by our project and contained items intended to assess both teachers’
subject matter knowledge and KCS in elementary number and operations. Teachers
cycled through parallel forms of the assessment during the summer portion of the
program, with one group taking form A as a pretest and B as a posttest, another group
taking B as a pretest and C as a posttest, and so forth. The parallel form structure
mitigated against memory effects, where teachers retaking the same form might
recall their answers to the previous form or have discussed answers with others prior
to the posttest. 

Numerous problems plagued the 2001 administration of the pre-post assessments,
including missing booklets and teacher and professional development provider
refusals (see Hill & Ball, 2004, for details). Nevertheless, by combining all reason-
ably complete pretests and posttests, we reached 640 responses to form A, 535
responses to form B, and 377 responses to form C. Each form contained items in
(a) number and operations common and specialized content knowledge; (b) number
and operation KCS; and (c) patterns, functions, and algebra common content
knowledge. By including multiple hypothesized domains on the assessment instru-
ment, we were able to conduct the construct identification analyses described
below. We also included a set of “teacher opportunity to learn” items in which
teachers reported on the content of their MPDI. These reports were used in the
convergent and discriminant validity analysis, described below. 

The first analysis conducted with this data was scaling work, including factor
analysis and item response theory (IRT) measure construction. These analyses
allowed insight into a central question of this article: Do items capture KCS or do
these items measure a more general dimension, such as overall mathematical
knowledge? And by extension, does the general population of teachers have a kind
of “knowledge” that can be labeled KCS? Factor analysis can help identify
constructs, first determining the number of separate constructs on forms, then
providing information on which items relate to which constructs. On our forms, for
instance, there might have been only one construct despite the presence of both CK
and KCS items; if so, we would have said that there is no distinction in our data
between these two theoretical categories. Or a factor analysis might indicate the form
contains two constructs, and items may group onto “CK” and “KCS” factors, as
theorized. Other possibilities exist, and we used ORDFAC (a variant of TESTFACT,
a common factor analysis program for test data; Schilling, 2005) to help us sort
among these possibilities. 

Once factor analysis confirmed the number of constructs on the form, we
proceeded to scale items. Our factor analysis did indicate multidimensionality,
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meaning scaling ideally would proceed using multidimensional IRT models.
However, such models require more than a thousand cases for proper estimation,
data we did not have at the time and were reluctant to collect, given the fact that
this was the first pilot of such items. Instead, we used Bilog (Zimowski, Muraki,
Mislevey, & Bock, 2003), software commonly used in unidimensional scale
construction. Bilog reports two useful pieces of information for understanding how
well a set of items measure a construct in a given population. One is the reliability
of the items, or how accurately the items distinguish between individuals.
Reliability is reported on a 0–1 scale, with lower values indicating scales that either
cannot distinguish accurately between differences in individual knowledge, or can
only accurately distinguish gross differences in knowledge (e.g., between a scholar
of student learning and a novice teacher). Higher values indicate an ability to more
precisely distinguish between individuals closer together on the underlying
construct (e.g., two teachers with only subtle differences in their level of knowl-
edge). The second useful descriptor is the test information curve maximum. If one
imagines a hypothetical normal distribution of teachers along an x-axis from
lowest-knowledge to highest-knowledge, the test information curve maximum
corresponds to the point on that distribution where the items’ ability to differen-
tiate among teachers is the highest. Ideally, a test information curve for a general-
purpose assessment would be centered on the peak of the normal distribution, since
that is where the majority of individuals’ knowledge level is located. However,
assessments may be more difficult—with their test information curve peaking at
a standard deviation or more above the average teacher—or less difficult. This
information is critical in examining how useful the assessment will be in research
and evaluation.

Convergent and discriminant validity. We also used data from the MPDIs to
conduct convergent and discriminant validity checks. In convergent validity,
analysts seek to determine whether constructs that should relate to one another actu-
ally do so; in discriminant validity, analyses confirm that constructs that should not
be related are, in fact, not. In our case, any gains in teachers’ KCS performance
should relate to their reports of having had opportunities to learn KCS but not to
learning other things, such as reports of having had opportunities to learn subject
matter knowledge. To determine whether this was the case, the same instrument
that carried the KCS items also asked teachers to describe their MPDI’s content.
Two Likert items asked teachers whether they focused on how students learn
number concepts and operations; these formed a scale with reliability .73 and
mean 3.24 on a 1 (low) to 4 (high) scale, indicating that many teachers reported
focusing on these topics. Another two items asked teachers to report on how much
their MPDI focused on subject matter knowledge in number and operations; these
items had a reliability of .60 and a mean of 3.44, suggesting that this was also a major
focus of the workshops. A single item asked teachers to report the extent to which
the MPDI contained “student work for participants to study”; the mean of this item
is 2.42 on a scale of 1 (low) to 4 (high). Finally, four items asked teachers the extent



384 Unpacking Pedagogical Content Knowledge

to which the MPDI provided an opportunity to learn purely mathematical topics,
including proof, justification, representation, and communication. Although this
variable positively predicted growth in teachers’ subject matter knowledge during
the institutes (Hill & Ball, 2004), it should not predict teacher growth in KCS. Here,
its mean is 3.28 on a scale of 1 (little opportunity) to 4 (much opportunity) and its
reliability is .74. Finally, information about the length of institutes was added to
the data from administrative records.

To enable this validity analysis, our parallel forms were equated using conven-
tional IRT linking methods (see Hambleton, Swaminathan, & Rogers, 1991;
McDonald, 1999). Details on the KCS scales in number and operations are reported
in Table 1. Teachers’ ability is reported in standard deviation units, with 0 repre-
senting the average teacher, +1 representing a teacher one standard deviation above
average in KCS, and so forth. To explore reasons for differential growth in teacher
knowledge, we ran linear mixed model regressions (Bryk & Raudenbush, 1988;
Singer, 1998) using teachers’ performance on the posttest as an outcome variable,
and predicted these outcomes using pretest score and the MPDI content indicators
described earlier. These models were run in SAS (SAS Institute Inc., 1999). 

Cognitive interviews. In addition to determining convergent validity, we were also
interested in a much more rudimentary form of validity: determining whether what
we conceptualized as KCS was actually measured by the items. Instead of tapping
individuals’ KCS, for instance, our items might measure individuals’ capacity to
use test-taking strategies. To determine whether such alternative hypotheses were
true and to learn more about the knowledge used to answer the items, we turned to
cognitive interviews.

A full account of sample recruiting, characteristics, instrumentation, and proce-
dures can be found in Hill, Dean, and Goffney (2007); we briefly describe each
here to provide context for the results below. Fifty-seven K–6 teachers were
recruited from three Midwestern school districts—two serving disadvantaged
student populations and one serving a socioeconomically mixed group of students.
Fifty of these teachers returned survey forms; from these 50, we selected 26 for
interviews on the basis of either low or high CK scores. Interviews took place from
1 week to 2 months after the return of the surveys. During the interviews, teachers
were asked to report on how they answered questions related to 17 stems; the exact
probe was “Why did you choose [answer choice]? What process did you go
through to decide?” This protocol constitutes what Sudman, Bradburn, and
Schwartz (1996) would term a “retrospective think-aloud,” and provides a rough
sense for the major characteristics of the cognitive processes respondents engaged
as they answered items. 

Subsequent to transcribing and entering teachers’ interviews into QSR N6 (QSR
International, 2002), a program that facilitates the management, coding, and analysis
of qualitative data, we categorized each teacher’s response to each question based
on the knowledge invoked to answer. Coding for each item was done by catego-
rizing teacher responses until coders reached 70% or greater agreement, at which
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point one individual completed coding the rest of the item. This process allowed
coders to come to agreement on how the coding scheme should be applied to
particular types of answers within each item. The codes themselves, described
below, were developed by reading, discussing and coding teachers’ responses to a
variety of items.

RESULTS: APPLYING THE MEASUREMENT CRITERIA

Identification of a KCS Construct

We first asked whether we could identify a KCS construct in the data. This is an
important question: If the items intended to measure KCS appeared no different from
the items intended to measure subject matter knowledge, we could not claim that
they measured the body of knowledge as we conceptualized it. Conversely, finding
a KCS factor would suggest that teachers do have discipline-specific knowledge
of student learning, as many have hypothesized. 

Extensive results on factor analyses are included in Hill, Schilling, and Ball (2004)
and Schilling (2007) and will be only briefly reviewed here. Exploratory factor
analyses did indicate that the KCS items formed their own separate, interpretable
factor but with a wrinkle: Some items meant to tap teachers’ KCS scaled with items
meant to tap CK, although no obvious differences emerged between these items and
those that scaled on the KCS factor. In a specialized confirmatory factor analysis,
where items were allowed to load either on a “general” or “KCS” factor, most items
loaded on both, suggesting either that (a) some individuals used KCS and others
used subject matter knowledge to answer these items, or (b) individuals used a
combination of both KCS and subject matter knowledge to answer the items. This
indicates that at least in the population that responded to our instruments, teachers
used both subject matter knowledge and KCS to answer these items. It also suggests
an answer to one of the central questions of this article: There is an identifiable
“knowledge of content and students” within the teaching population, at least with
the particular set of items piloted and in the particular population of teachers
included in our sample (Hill et al., 2004). However, this knowledge may rely in part
on teachers’ underlying subject matter knowledge and is imperfectly discerned with
the set of items used in our current instruments. 

Meeting Standards for Reliability

The next step in analysis was to determine the reliability of the KCS items on
each form. Reliability is a critical diagnostic in assessing the utility of a set of
measures, and it can be thought of intuitively in several ways. Most formally, reli-
ability is defined as the proportion of true score variation in the data to true score
and error variation combined, or the ratio of “signal” to “signal + noise” in a
measure. Noise may result from several sources: (1) a set of items that do not cohere
as well as intended (e.g., a set where 10 items measure construct A and another 5
measure construct B); (2) the presence of items that fail to help distinguish between
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knowledgeable and less knowledgeable individuals; (3) a set of items that are
mismatched to the ability level of the population being measured. In general, reli-
abilities of .70 or above are considered adequate for instruments intended to answer
research and evaluation questions using relatively large samples. 

Reliabilities for the forms were low, relative to industry standards. In a previous
article, we reported IRT reliabilities as .71 for form A, .73 for form B, and .78 for
form C (Hill et al., 2004). These reliabilities described a sample that combined
pretests and posttests for each form, a decision we made in order to allow the use
of an IRT model that overweights highly discriminating items in the estimation of
reliability. Table 1 shows the reliabilities for teachers and forms included in the pre-
post evaluation reported below. Because we had a smaller sample size,1 the IRT
model chosen did not overweight highly performing items, and reliabilities were
slightly lower than our original report. These reliabilities were lower than industry
standards suggest are sufficient for use in research and evaluation projects. Said
another way, these measures cannot as accurately discriminate among teachers of
different knowledge levels as we would like, often misplacing teachers relative to
one another and to specific benchmarks (e.g., an average teacher). 

1 “Two-parameter models,” in which items that strongly discriminate between teachers are over-
weighted, typically require several hundred respondents for proper estimation. Here we used one-para-
meter models, which do not weight items. When each item is weighted equally, reliabilities fall because
the proportion of the scale composed of poorly performing items is increased. 

Table 1
Reliabilities of KCS Scales in Number and Operationsa

Number Number Test information 
Scale stems items Reliability curve maxb

Form A
Pretest 14 20 .60 –1.500
Posttest 14 20 .67 –1.120

Form B
Pretest 14 19 .68 –1.000
Posttest 14 19 .65 –1.250

Form C
Pretest 15 21 .58 –1.370
Posttest 15 21 .69 –0.875

aThese are one-parameter IRT models. Some items are nested beneath one common stem, e.g., Appendix
item 1. Thus the number of items is more than the number of stems on each form.

bThese test information curve maxima are reported prior to form equating.

One possible reason for these lower reliabilities is the multidimensionality
found in the factor analysis. When a set of items draw upon more than one type
of knowledge (i.e., CK and KCS), the items do not cohere as tightly as if all
measured the same construct. But other explanations are also suggested by diag-
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nostic information about the overall scales and individual items. One common prac-
tice in IRT analyses is to examine each item’s ability to discriminate between
teachers at a particular ability level using a metric called the “slope” (for a tech-
nical interpretation, see Hambleton et al., 1991). Generally, items must have
slopes above .4 for continued use. Across all three forms, roughly 15% of items
failed this criterion. This suggests that our items often failed at capturing elements
of knowledge about students that existed in the population of teachers participating
in this study; in other words, much of what we hypothesized to be an aspect of this
knowledge did not help distinguish between knowledgeable and less knowledge-
able teachers in this domain. 

Another explanation exists for the relatively low reliabilities. The test informa-
tion curve, which identifies the level of knowledge at which the scale best measures
individuals, suggests that for all three forms, best measurement occurs for teachers
between 1 and 2 standard deviations below average. Figure 2 shows this in more
detail. The x-axis is the teachers’ scale score; 0 typically corresponds to the average
teacher in the population under study, with negative scores indicating less knowl-
edgeable teachers and positive scores indicating more knowledgeable teachers. In
this case (form A pretest), the most information (shown as a solid line and measured
on the left y-axis) is provided for teachers between two standard deviations below
average; a corresponding standard error estimate (shown as a dotted line and
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measured on the right y-axis) shows that errors in score estimation rise precipitously
for individuals above average. 

This finding has practical implications. First, identifying highly knowledgeable
teachers and tracing growth among groups of teachers who become highly knowl-
edgeable will be difficult. A second implication relates back to how item construc-
tion took place. Because we hoped to be able to make distinctions among teachers
of all knowledge levels, we wrote items intending that the average score on the
assessment would be 50%. This design implied including difficult items, ones that
perhaps only 20–40% of the population would answer successfully, in order to
discriminate between highly knowledgeable teachers and very highly knowledge-
able teachers. Instead, on only 13 of 59 items did teachers answer correctly less than
50% of the time—and only 3 items had a frequency correct of 25% or fewer. This
is quite off the target, especially considering that many of the items teachers
“missed” were ones that our analyses showed did not actually capture teachers’ KCS.
Reasons for this are explored in more detail below.

Capturing KCS as Conceptualized

Factor analysis and measure construction provide one method for checking the
validity of these items—that is, whether the hypothesized ability we measured is
actually a coherent domain. If results accord roughly with theory, the theory is
neither disconfirmed nor confirmed; the factors we identified, for instance, might
represent test-taking skills or even reading ability. To learn more about what we
measured, our cognitive interviews contained six KCS items focused around
common student errors in number and operations; five were multiple choice and
one was open-ended (see Appendix item 4). Hill et al. (2007) described the complete
coding scheme used to classify teacher answers; we include here only the expla-
nations prevalent in answering KCS items:

• KCS—Teacher invokes familiarity with students’ errors as partial or complete
explanation for selecting their answer (e.g., “My students do this all the time.”)

• Mathematical reasoning—Teacher uses mathematical deduction, inference, or
other type of reasoning to support her answer (e.g., “Looking at these numbers
listed in the problem, (c) must be true.”)

• Test-taking skills—Teacher uses information in the stem, matches response
choices to information in the stem, or works to eliminate answers as method for
solving problem (e.g., “I knew it wasn’t (a), thus (d) ‘all of the above’ couldn’t
be true.”)

Answers could be coded more than once—for instance, if a teacher used both test-
taking skills and KCS. Additionally, answers coded “KCS” had to be the KCS the
item was meant to capture rather than knowledge of students used to support an
“incorrect” answer, although subsequent analyses relaxed this assumption. 

Table 2 shows the percentage of teacher responses for each item. Clearly, KCS
was an often-supplied explanation for answers; in 42% of cases, teachers referenced
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their experience with children to support their chosen answer. In some cases, the
reference was spontaneous. While discussing Jill’s buggy subtraction (Appendix
item 4), a teacher said, “She’s just subtracting the smaller digit in each place from
the larger, not regrouping. And I see a lot of that.” In others, an interviewer probe
triggered teachers’ statement of familiarity with the student error (e.g., “I: And that’s
a common problem you’ve seen with your kids?” R: “Huge. Huge. Huge.”). Not
surprisingly, teachers’ familiarity with these student errors was greatest when they
taught children of similar age and developmental levels. This suggests that teachers
do have knowledge of students’ common errors and that these items partially
tapped this knowledge. 

Table 2
Reasons for Item Responses—Validation Interviews

Mathematical Test-taking Row 
Items KCS reasoning skills total

Bonny’s problem with 23 13 9 13 35
(37%) (26%) (37%)

Student error with base-10 blocks 18 6 9 33
(55%) (18%) (27%)

Mrs. Jackson always carry 1 16 25 1 42
(38%) (60%) (2%)

Student misunderstanding 16 6 9 31
of equal sign (52%) (19%) (29%)

Ordering decimals assignment 1 25 1 27
(4%) (93%) (4%)

Jill’s buggy subtraction 19 12 0 31
(61%) (39%) (0%)

However, we classified an equal number (42%) of explanations as mathematical
reasoning. In some cases, mathematical reasoning seemed central to answering the
item correctly, as in Appendix item 2: 

I said (a), that (I) and (II) had the same kind of error. I worked them out again to see
kind of what they were and when I did it I saw that they were carrying a one instead of
a two in both cases. And for the third one, it was their addition, that they just had the
wrong number in the ones place so they either added wrong or—. So I saw (I) and (II)
were the same type of problem they had.

Here, teachers must perform a mathematical analysis in order to answer the problem
correctly; in fact, teachers need not know whether this is a typical student error. 

In another response by the same teacher, mathematical reasoning took place in
conjunction with KCS:
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I said Jill [Appendix item 4] might not have known how to subtract eight from one so
instead she did eight minus one is seven so she went down to the one and subtracted
that way. And then . . . but she can subtract one from five so she got four. So I was just
thinking that she didn’t regroup it to give her that eleven to subtract the eight from and
didn’t check what she was doing because looking at it, it doesn’t make sense. And I
see kids do that all the time.

Here, we might argue that this teacher’s ability to analyze the mathematical problem
and familiarity with students’ errors both facilitated her answer. For this same item,
however, some teachers’ answers appeared to rely more heavily on familiarity with
the student error; others appeared to rely more heavily on the mathematical analysis.
In each instance, such thinking usually led to a correct answer. 

That teachers might use either KCS, mathematical reasoning, or both to get these
items correct is not surprising. Logically, teachers must be able to examine and inter-
pret the mathematics behind student errors prior to invoking knowledge of how
students went astray. This multidimensionality was in fact reflected in our original
specification of KCS as amalgamated knowledge of content and students, and it
helps explain the factor analysis findings described above. Unfortunately, it also
leads to problems of measurement, because items vary in the extent to which they
draw on these two dimensions. We also find it particularly troubling that the cogni-
tive interviews suggest that many of these problems can be answered in the absence
of the KCS they were intended to assess.2 This may help explain high teacher scores
on this construct, as even if KCS is not present, mathematical reasoning and knowl-
edge can compensate. 

A third category of explanation for answers involved test-taking skills. Table 2
shows that test-taking strategies were prevalent in three of the five closed-ended
items presented to respondents. In addition to providing evidence that these items
tap unintended constructs, the use of test-taking skills here also explains the higher-
on-average scores for the multiple-choice items. By crossing responses coded as
“using test-taking skills” with the correctness of the response, we see that of 93
responses that were coded as test-taking, 76% resulted in a correct answer. For
subject matter knowledge items, by contrast, test-taking strategies as often led to
incorrect answers (49%) as correct answers (51%). This further amplifies the prob-
lems of measurement we face in this area; if the relatively common use of test-taking
skills were not problem enough, the use of test-taking skills for KCS items leads
respondents toward correct answers. 

The cognitive interview data offer several other clues about problems of measure-
ment in this domain. First, very few teachers selected outright “wrong” answers,
or distractors, to problems such as the Bonny and decimal ordering items (Appendix
items 1 and 3). In the MPDI pre-post sample, for instance, only 1% answered (a)
and 4% answered (b) for the first; only 2% answered (c), and 1% answered (d) for
the latter. The most common incorrect answer was the “all of the above” response,

2 A related study (Hill, Dean, & Goffney, 2007) found that mathematicians and non-teachers tended
to do quite well on this set of items via mathematical reasoning alone. 
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a pattern we saw repeated on many other items in our closed-ended survey. This
suggests a hypothesis about the domain under study: that expert teachers are differ-
entiated from nonexperts only by the specificity and detail of their interpretations
of student problems. Teachers without such knowledge may accept many different
explanations for student errors, be unable to discriminate common strategies, or be
unable to identify developmental pathways—and thus accept any plausible answer.
For this reason, measurement may be difficult in the context of a multiple-choice
format, which depends heavily upon item distractors matching individuals’ miscon-
ceptions and faulty reasoning processes. Whether this is the case or not is a topic
for future, more qualitative, research. 

A problem with the decimal ordering item (Appendix item 3) suggests a further
complication, however: that the knowledge we intended an item to capture was
unevenly measured because teachers had other knowledge of student errors and
developmental sequences that “interfered.” In the original coding, we specified that
answers coded “KCS” had to match the KCS intended to be measured by the item.
In relaxing this assumption, we see that teachers’ “other” KCS often played a large
part in their reasoning process. In the decimal ordering item, for instance, some
teachers commented that students sometimes make errors when they see a whole
number (7 in choice (b)) mixed with decimals, making this option attractive.
Although we did not intend to measure this “knowledge of students,” it seems a legit-
imate defense of (b) as a correct answer. Among the interviewed teachers, in fact,
none answered (c) on the basis of the common “ignore decimal point” error,
although roughly half commented to interviewers that they were familiar with this
error. With the Bonny problem (Appendix item 1), a similar problem emerged:

This is my kids. Bonny thinks that two and twenty are the same. I put that down. And
then I got to Bonny doesn’t know how large twenty-three is, and then Bonny doesn’t
understand the meaning of the places. And see, all of the above, for my kids, that’s
true. . . . I said all of the above.

This teacher’s comments suggest either that she is a nonexpert who cannot distin-
guish between incorrect and correct explanations for Bonny’s errors or that there
is an element of truth in the distractors, based on her experience in the classroom. 

These problems lead to a question: Can teachers’ KCS be measured in multiple-
choice format? Unfortunately, there is no “proof of concept” item, in the sense that
factor analyses demonstrate it measures KCS; our interviews demonstrate teachers
use KCS to answer it, the item statistics indicate it performs well in distinguishing
among teachers, and it is reasonably difficult. However, our interview covered only
six KCS items; our larger item pool contains several items that meet at least the
psychometric criteria and a few that perform exceptionally well. Further cogni-
tive interviews will help clarify whether these items do, as we suspect, better
measure KCS. 

An inspection of these successful items may provide hints as to future directions
for measure development. By successful, we mean those that discriminate among
teachers of different knowledge levels, and in particular those that discriminate
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among highly knowledgeable and very highly knowledgeable teachers, where our
scales were weakest. One type of highly discriminating and at least moderately diffi-
cult item asks teachers to inspect different student productions, and then make a
determination about which knowledge was either a) most advanced, developmen-
tally or b) reflected understanding of the mathematics, rather than procedural or
factual recall. Another set of successful items asks teachers to determine which
computational strategies students would be likely to use or not use in modeling prob-
lems or remembering basic facts. A third set of successful items asks teachers to
supply the reasons for common student misconceptions or procedural errors. These
all seem promising directions for future item development.

Results from the cognitive interviews suggest lingering problems with our
conceptualization of this domain, including the need to answer questions
surrounding whether it consists of recognition, recall and/or reasoning, and whether
the research base or teachers’ own non-research-based KCS should predominate;
we discuss these at more length in the discussion and conclusion. Results from the
cognitive interviews, however, do suggest explanations for the lower reliabilities
and test information curves reported in the psychometric analysis: teachers’ reliance
on mathematical reasoning and test-taking strategies might have inflated scores.
Results also suggest that KCS may be at least a portion of what has been measured
by this set of items. With this in mind, we turn next to the pre-post MPDI analysis
as a final check on validity. 

Demonstrating Convergent/Discriminant Validity

Another approach to validity examines the associations between a set of measures
and other constructs to which they are hypothesized to relate (convergent validity)
and not relate (discriminant validity). Our pre-post analysis of the MPDI data
provided the opportunity to take such an approach. We asked whether any growth
in teachers’ KCS scores related to teacher reports of covering KCS-related topics
in their institute, rather than their reports of covering subject matter knowledge more
generally. 

Overall, teachers gained .21 standard deviations between pretest and posttest on
the KCS measure. A t test showed that this gain is statistically significant (different
from zero) at p < .0001. Substantively, this gain corresponds roughly to a 1–2 item
increase in the raw number correct on our assessment. This average, however, masks
variation in MPDIs; teachers in some institutes garnered 2-item gains, whereas
others did not gain at all. An analysis of variance showed that these institute-level
differences were significant (F = 3.21, p < .0001). Results from an unconditional
mixed model (described below) suggest that 9% of the variation in gain scores lay
between institutes, rather than between teachers within institutes. 

Our cognitive interview results suggest that the overall growth exhibited on
these measures might have resulted from improvements in teachers’ actual KCS,
or alternatively, in teachers’ subject matter knowledge. Improvements in either
would have boosted a teachers’ score, assuming results from the cognitive inter-
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views hold across the item set. To investigate this, we ran mixed models to deter-
mine the relationship between MPDI foci and teachers’ gain; if teachers’ gain scores
were more related to their reports of learning KCS than pure subject matter knowl-
edge, this adds to the evidence that the measures do capture some aspects of KCS.
We also controlled for the pre-post combination of forms that teachers took,
because results from the factor and item analyses suggested multidimensionality
in our forms. If there were imbalances across forms in the extent to which KCS items
drew on the KCS vs. general factors, these pre-post dummy variables would iden-
tify and control for them. 

Table 3 shows correlations among independent variables, and Table 4 shows
results from the mixed model analyses. In Model 1, we see that teachers’ pretest
score is the best predictor of their posttest score. Length of the institute is also
marginally significant, with longer institutes producing stronger teacher gains.
Teachers’ reports of institute focus on KCS were significant at p < .05, suggesting
that when teachers studied how students learn, they performed better on our posttest.
Finally, the variable representing institutes that used student work as part of the
curriculum was not significant and close to zero. It is difficult to say what this means,
given that this is a 1-item variable, and thus prone to error of measurement. 

Table 3
Correlations Between Predictors in Pre-Post Analysis

Focus on 
Focus on proof, analysis, 

Focus on Studied subject matter representation, Length of
KCS student work knowledge communication MPDI

Focus on KCS 1.00 .53** .53** .44** –.05
(426) (422) (400) (426) (426)

Studied student 1.00 .10* .29** .06
work (423) (397) (423) (423)

Focus on subject 1.00 .45** .35**
matter knowledge (401) (401) (401)

Focus on proof, 1.00 .13*
analysis, (427) (427)
representation, 
communication

Length of MPDI 1.00
(429)

* p < .01. ** p < .0001.

Because of the small number of institutes and the correlation between the KCS
and subject matter knowledge focus variables (r = .34), we could not jointly enter
both into the same model. Doing so would have allowed us to identify whether
one, the other, or both were responsible for teachers’ growth on this construct.
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However, Model 2 shows the effect of the subject matter focus variable and a
related variable—focus on proof, analysis, representation, and communication—
on teachers’ outcome scores, controlling for pretest scores. This latter variable was
shown to significantly predict teachers’ growth in subject matter knowledge (Hill
& Ball, 2004) and captures teachers’ reports of the MPDI emphasizing these
aspects of mathematical work. That neither it nor the subject matter focus predictor
are significant here suggests that these scales have measured, in the context of the
MPDI evaluation, growth in teachers’ KCS.3 Although there are indications of
significant problems in the measurement of teacher knowledge in this area, the
items and scales we developed are at least moderately sensitive to teachers’
reported opportunities to learn KCS. 

Table 4
Pre-Post Analysis of Learning in MPDIs

Model 1 Model 2

Intercept –.35 –.54
(.24) (.26)

Pretest score .58 .58
(.04) (.04)

Focus on KCS .13
(.06)**

Studied student work –.05
(.04)

Length of MPDI .14* .12
(.06) (.07)

Focus on subject matter knowledge .06
(.07)

Focus on proof, analysis, representation and communication .10
(.07)

Group B –.24 –.24
(.16) (.16)

Group C .30 .29
(.19) (.19)

Variance components
Institutes .04 .04
Residual .42 .43
Akaike Information Criteria (AIC) 877.0 883.8

Note. Numbers in parentheses are standard errors.
* p < .10. **p < .05.

3 More evidence for this contention is provided by the model fit statistic AIC, which is slightly lower
for Model 1 than Model 2. A lower AIC indicates better model fit.
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DISCUSSION AND CONCLUSION

Results from our analysis of the KCS items suggest several conclusions. First,
we found that teachers do seem to hold “knowledge of content and students.” The
factor analyses of multiple forms and interviews with teachers suggest that famil-
iarity with aspects of students’ mathematics thinking, such as common student
errors, is one element of knowledge for teaching. To those interested in identifying
a knowledge base for teaching that might guide the preparation of teachers or the
content of professional development, verifying that such knowledge is distinct from
pure content or pedagogical knowledge is an important first step. Although it
remains to be seen whether and how such knowledge, as we have measured it, is
related to improving student learning in mathematics, our results bolster claims that
teachers have skills, insights, and wisdom beyond that of other mathematically well-
educated adults. 

We also learned, however, that measuring such knowledge is not a straightfor-
ward enterprise. Although teachers’ pre-post MPDI scores were responsive to
reports of MPDI focus on students and content, results from other psychometric and
validation analyses were much more equivocal. Scales, on the whole, were not nearly
reliable enough to justify dissemination and use in research. Scales were poorly
targeted, measuring less-than-knowledgeable teachers sufficiently but few others
well. Both psychometric work and teacher interviews suggested that within the KCS
domain, there was strong multidimensionality. Multidimensionality was, of course,
part of our specification of this domain. However, the type of multidimensionality
that emerged—with items relying in different amounts on mathematical reasoning,
knowledge of students, and perhaps even on a special kind of reasoning about
students’ mathematical thinking—yields difficulties in the construction of parallel
forms and teacher scores. 

Overall, the effort described here resulted in a glass half full. More important,
however, it also resulted in key lessons for future efforts to measure teacher
knowledge in this and similarly structured domains. We consider three types of
lessons: for conceptualization, for measurement, and for the criteria we proposed
for undertaking both. 

First, we learned that this domain remains underconceptualized and understudied.
Although most scholars, teachers, and teacher educators would agree that teachers’
knowledge of students’ thinking in particular domains is likely to matter, what
constitutes such “knowledge” has yet to be understood. Does KCS consist of facts
that the research literature has uncovered about student learning? Of observations
that experienced teachers make about student learning and errors? If the former, the
research base is far from complete; we know far more about students’ knowledge
and thinking in areas such as fractions, early arithmetic, functions, probability, and
geometry than we know in domains such as measurement, integers, and number
theory. If the latter, the situation is similarly complicated. Research in educational
psychology may miss important aspects of knowledge that teachers develop from
their work with learners. Consequently, our items, by drawing on that research, may
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have asked questions that do not resonate with teachers’ experience and may have
missed posing questions that tap the professional knowledge that teachers hold
implicitly. Mapping this knowledge is likely to be a long and time-intensive process;
however, it is necessary for the development of these and similar items. 

Further, the very notion of “knowledge of content and students” as knowledge needs
further development. Teachers “know” that students often make certain errors in partic-
ular areas, or that some topics are likely to be difficult, or that some representations
often work well. But teachers also reason about students’ mathematics: They see
student work, hear student statements, and see students solving problems. Teachers
must puzzle about what students are doing or thinking, using their own knowledge
of the topic and their insights about students. Some teachers may do this with more
precision and skill than others, but we lack theory that would help us examine the
nature of teachers’ mathematical-pedagogical reasoning about students. Some teachers
may “know” things about students in particular domains, whereas others may be
figuring out students’ thinking as they teach. Thus we are probably measuring
different skills and knowledge for different teachers, even within the same items. 

In sum, our work suggests that the conceptualization of the domain is far from
straightforward. In our case, we attempted to build the ship while sailing it—by
writing items to help push our conceptualization and definition forward. Even
though this proved theoretically productive, it no doubt contributed to our difficul-
ties. We suspect that other research groups, however, are sailing similar boats. Our
advice is to think carefully about the nature of the domain to be measured, including
close analysis of the types of knowledge and reasoning that teachers do in their work. 

The second set of lessons we draw involves measuring knowledge in this and
similar domains. First, as originally formulated by Shulman and in our own theo-
retical work, this knowledge is explicitly multidimensional; as operationalized in
discipline-specific, student-specific items, it cannot help but be. Unfortunately,
psychometricians have little good news under these circumstances. Users must plan
to collect large datasets and employ complex scaling techniques. If measurement
endeavors like these are to succeed, as we think they must, there is an urgent need
for more capacity on both fronts. 

Next, these results have led us to think carefully about the multiple-choice format.
Results from our cognitive interviews suggest that test-taking and mathematical
reasoning helped respondents arrive at the correct answer. There is also a possibility,
not examined in these retrospective cognitive interviews, that the items “taught” the
content, essentially causing an “aha” moment for many teachers. In fact, we failed
to write—and teachers failed to select—outright “wrong” answers to our items.
During writing, we found that answer choices we intended to be wrong often seemed
absurd, even to those with little knowledge of students. Other “wrong” answers had
a grain of truth to them, making it difficult to penalize respondents who selected them. 

This suggests that a possible direction for future item development in this and
similar domains might be to invest in open-ended items like Appendix item 4.
Unfortunately, these measures require that they be scored by hand before scaling,
a considerable expense for large-scale studies. And we argue that there is need for
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measures for such studies: currently, educational economists are using value-added
models to determine what makes effective teachers. It is vitally important for class-
room-based research to contribute both conceptions of good teaching and measures
of good teaching to this work. Although we did not find an item among the six
studied intensively here that met all of our proof-of-concept criteria for the multiple-
choice format, we do have promising items in our larger pool. Investigating these
items via interview and open-ended task studies is critical. 

Finally, this study suggests the importance of using explicit criteria to guide
measure conceptualization and development. We could have easily written items,
administered them to teachers, and reported that we detected MPDI success in a
pre-post analysis. Instead, we used the criteria to uncover significant problems in
both the conceptualization and measurement of this domain. Rather than see our
effort end here, however, we chose to use our results to demonstrate the benefits
of using such an approach and to note aspects of the domain that we believe will
prove useful to other researchers and future studies.
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APPENDIX: SAMPLE ITEMS

1. You are working individually with Bonny, and you ask her to count out 23
checkers, which she does successfully. You then ask her to show you how
many checkers are represented by the 3 in 23, and she counts out 3 checkers.
Then you ask her to show you how many checkers are represented by the 2 in
23, and she counts out 2 checkers. What problem is Bonny having here? (Mark
ONE answer.)

a. Bonny doesn’t know how large 23 is.
b. Bonny thinks that 2 and 20 are the same.
c. Bonny doesn’t understand the meaning of the places in the numeral 23.
d. All of the above.

2. Mrs. Jackson is getting ready for the state assessment, and is planning mini-
lessons for students focused on particular difficulties that they are having with
adding columns of numbers. To target her instruction more effectively, she wants
to work with groups of students who are making the same kind of error, so she
looks at a recent quiz to see what they tend to do. She sees the following three
student mistakes:

+ 1 + 1 + 1

+ 38 + 45 + 32
+ 49 + 37 + 14
+ 65 + 29 + 19
142 101 + 64

(1) (II) (III)

Which have the same kind of error? (Mark ONE answer.)
a. I and II
b. I and III
c. II and III
d. I, II, and III

3. Mr. Fitzgerald has been helping his students learn how to compare decimals. He
is trying to devise an assignment that shows him whether his students know how
to correctly put a series of decimals in order. Which of the following sets of
numbers will best suit that purpose? (Mark ONE answer.)

a. .5 7 .01 11.4
b. .60 2.53 3.14 .45 
c. .6 4.25 .565 2.5
d. Any of these would work well for this purpose. They all require the 

students to read and interpret decimals.

4. Consider Jill’s response to a subtraction problem. How might she have gotten
an answer like this?

51
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