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There is widespread agreement that effective teachers have unique knowledge of
students’ mathematical ideas and thinking. However, few scholars have focused on
conceptualizing thisdomain, and even fewer have focused on measuring this knowl-
edge. In this article, we describe an effort to conceptualize and devel op measures of
teachers' combined knowledge of content and students by writing, piloting, and
analyzing results from multiple-choice items. Our results suggest partial successin
measuring this domain among practicing teachers but also identify key areas around
which the field must achieve conceptual and empirical clarity. Although this is
ongoing work, we believe that the lessons learned from our efforts shed light on
teachers’ knowledge in this domain and can inform future attempts to develop
measures.
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In theyearsfollowing Shulman’s seminal 1986 addressintroducing the notion of
pedagogical content knowledge (PCK), most scholars and policymakers have
assumed that such knowledge not only exists but also contributes to effective
teaching and student learning. Standards documents—including those of NCTM and
theNational Board for Professional Teaching Standards (NBPT S)—notetheimpor-
tance of teachers holding knowledge of “ studentsaslearners’ (NCTM, 2000, p. 17)
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and being able to recognize the “preconceptions and background knowledge that
studentstypically bring to each subject” (NBPTS, 2006, p. vi). Preservice programs
and professional development opportunities often focus on developing teachers
knowledge of and skill in understanding students' mathematical work and thinking.

Y et scholarly evidence about what PCK is, and how it relatesto students’ math-
ematical outcomes, is actually quite thin. Although well-designed research has
shown that professional development focused around such knowledge results in
changed classroom performance and improved student learning, these results are
limited to a handful of studies in relatively narrow content areas (Carpenter,
Fennema, Peterson, Chiang, & Loef, 1989; Cobb et a., 1991; Franke, Carpenter,
& Levi, 2001; Saxe, Gearhardt, & Nasir, 2001). And beyond Shulman’s original
formulation, there have been few attempts to develop concise yet well-specified
descriptions of what teachers know in this domain. Further, no large-scale study
has related teachers' PCK to students' gains. Although what we call “knowledge
of content and students,” or teachers’ knowledge of students’ mathematical thinking
and learning, iswidely believed to be an important component of teacher know!-
edge, it remains underspecified, and its relationship to student achievement
undemonstrated.

We argue that these gaps stem from a two-fold problem in mathematics educa-
tion research. First, welack studiesthat demonstrate that teachers possessthisknowl-
edge apart from knowledge of the content itself. Second, the field has not devel-
oped, validated, and published measures to assess the many programs designed to
improve teacher knowledge in this domain and to understand how this knowledge
relates to student achievement.

Thisarticle chroniclesafirst effort to conceptualize, devel op, and test measures
of teachers’ knowledge of content and students (KCS). We do so in aframework
that ultimately connects all three pieces of this work, tying the conceptualization
directly to the specification of items, and tying results from field tests back to
strengths and weaknesses of theinitial conceptualization. Although thisisongoing
work, we choseto writeabout it at this particular juncture because our efforts might
be instructive to others trying to conceptualize, identify, measure, and ultimately
improveteachers' PCK. Thiswork might also be useful to those engaged in parallel
work, such as measuring teachers' ability to design effective instruction and
mesasuring teachers’ skillsin motivating studentsto learn mathematics. Finaly, this
work isan important precursor to designing and implementing large-scale studies
that assess whether teachers' knowledge of mathematics and students contributes
to student learning. As economists and others have noted, teacher characteristics
such as credentials, experience, and even general mathematical knowledge provide
only limited explanations for wide variations in student gain scores across class-
rooms (for areview of the economics literature, see Wayne & Y oungs, 2003; for
studies specifically focused on mathematics, see Begle, 1972, 1979; Monk, 1994).
Educators, and mathematics educatorsin particular, need to do moreto help explain
this phenomenon—beginning with devel oping new, more sensitiveinstrumentsthat
capture key teacher characteristics.
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We argue that two sets of criteriaare vital to building such measures. The first
set of criteria concerns the conceptualization of the domain. Researchers should
begin by proposing a construct, taking care to elaborate the theoretical or empir-
ical basis for the construct, delineate the boundaries of the construct, and specify
how it isrelated to other similar constructs. Each of the above should providerela-
tively specific information regarding the nature of knowledge and how it might be
assessed. As part of this work, researchers should consider the cognitive process
involved in this domain, particularly with regard to how measurement should
proceed. Measures of facts, for instance, will look different from measures of
reasoning processes; measures of knowledgethat ishighly contextually bound will
look quite different from measures of knowledgethat iscommon acrossawiderange
of settings.

Second, in any measures devel opment effort, datayiel ded from pilotsof theitems
must be analyzed to assess whether the conceptualization is correct and adequate
and to determine whether theinstruments meet several measurement-related criteria
These criteriainclude that construct-identification methods (e.g., factor analysis)
demonstrate that the construct is clearly present and separable from other related
constructs; that the items adequately measure the popul ation under study, inthe sense
that they provide areliable estimate of individual knowledge acrossarange of levels
of expertise; and that validation work begin to assess, using nonpsychometric
methods, whether the items tap the intended construct.

Thesecriteriaare based on those found in the AERA/APA/NCME Sandardsfor
Educational and Psychological Testing (1999) and informed by current debatesin
thefield of educational measurement and evaluation (e.g., Kane, 2004). Webelieve
that meeting these criteriaiscritical to yielding credible measures. Y et thiskind of
effort isseldom launched (Messick, 1988). All too often, scholarsreport resultsfrom
locally developed measures without reference to their conceptualization, design,
psychometric, and validation work. We also argue that fulfilling these criteriacan
yield important information about the constructs themselves and the populations
under study.

Thisarticle follows an unusual format. We begin by discussing our conceptual -
ization of the domain of KCS; we regard this conceptualization as a hypothesis to
be explored in the empirical portions of the article. We then describe our effortsto
writeitemsand outlinethe methods used in pil oting, analyzing, and validating these
items. In the third section, we assess whether our conceptualization is accurate,
asking whether KCS existsin the general population of teachersand, if so, how we
might describe it. We also ask whether the measures have sufficient validity and
reliability for usein research studies.

CONCEPTUALIZING THE DOMAIN

Our project seeks to understand and measure mathematical knowledge for
teaching—the mathematical knowledge that teachers usein classroomsto produce
instruction and student growth. Our work to date has focused mostly on teachers
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subject matter knowledge—not only knowledge of the actual topicsthey teach but
the special forms of mathematical knowledge that are particular to the profession
of teaching (Ball, Hill, & Bass, 2005; Hill, Rowan, & Ball, 2005). In addition to
subject matter knowledge, however, we believe that teachers might also possess
additional forms of knowledge useful to their work in classrooms. Below, we
describe how we conceptualized one such strand of this knowledge, taking careto
discussitstheoretical and empirical justification, to delineateitsboundariesand rela-
tionships to other constructs, and to discuss the measurement implications of our
conceptualization.

Defining KCS

We propose to define KCS as content knowledge intertwined with knowledge
of how studentsthink about, know, or learn this particular content. KCSisusedin
tasks of teaching that involve attending to both the specific content and something
particular about learners, for instance, how studentstypically learn to add fractions
and the mistakes or misconceptions that commonly arise during this process. In
teaching studentsto add fractions, ateacher might be awarethat students, who often
have difficulty with the multiplicative nature of fractions, arelikely to add the numer-
ators and denominators of two fractions. Such knowledge might help her design
instruction to addressthislikely issue. In thinking about how students might solve
a problem like 56+9, to use another example, a teacher might know that some
studentswill count on, somewill add 10 and then compensate by subtracting 1, and
still otherswill use a standard algorithm.

This definition is based on both theoretical and empirical work on teacher
knowledge. To start, KCSisaprimary element in Shulman’s (1986) PCK. Inthis
view, such knowledge is composed of “an understanding of what makes the
learning of specific topics easy or difficult: the conceptions and preconceptions
that students of different ages and backgrounds bring with them to the learning of
those most frequently taught topics and lessons” (1986, p. 9). Shulman noted that
research on students' thinking and ideas provides a critical foundation for peda-
gogical knowledge.

In mathematics, the work of Fuson (1992), Kamii (1985), and Carpenter,
Fennema, Franke, and Empson (1999) in the areas of number and operation, Behr,
Harel, Post, and Lesh (1992), and Lamon (1999) in rational numbers, and Carpenter,
Franke, and Levi (2003) in algebra exemplify research on how students solve
problems, devel op mathematically, and encounter difficultieswith particular aspects
of subject matter. Following Shulman, we used these and other content-specific
studies of student learning asthe foundation for the measures described below. We
chose not to ground our measure in overarching and thus more generic theories of
learning (e.g., constructivism or behaviorism) for two reasons. First, our definition
of KCS suggeststhat werely on empirical evidence regarding how studentslearn.
Theory is, literally, theory, and isthus propositional and arguable; “ correct” answers
based on theory would be difficult to defend, for several theories of student learning
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legitimately compete. Teachers' answers would be indicative of views of student
learning, or knowledge of such views. Second, theories of student learning arealso
necessarily abstracted from specific instances, making them difficult to use in
item-writing. By contrast, we wanted to measure teachers' knowledge with demon-
strated devel opmental patterns and problems with specific material.

Evidence for KCS

The strongest empirical evidence for KCS comes from experimental and other
tightly controlled professional devel opment studiesin which teachersinvestigated
how students learn particular subject matter, such as whole number operations or
fractions (Carpenter et a., 1989; Cobb et al., 1991; Franke & Kazemi, 2001; Saxe
eta., 2001). When teachers studied thismaterial, their classroom practi ces changed
and student learning was improved over that of teachersin control or comparison
groups. This suggests that such knowledge is useful to teachers disciplinary
teaching. However, it says nothing about whether teachers who are not involved
in such professional development possess such knowledge and, if so, what shape
it takes. It isalso possible, in many of these programs, that teachers learned some
mathematical content itself. In this case, improvements in subject matter knowl-
edge, rather than KCS, would be driving student achievement.

In fact, there are only alimited number of investigations into what “average”
teachers know about students' mathematical thinking. A search of “pedagogical
content knowledge” in the Educational Abstracts database led to only one study
directly on this point. Carpenter, Fennema, Peterson, and Carey (1988) explored
40first-gradeteachers’ knowledge of children’s solutions of addition and subtrac-
tion word problems. Their result was slightly paradoxical: Although most teachers
could distinguish between problem types and predict which would be relatively
more difficult for studentsto solve, much of thisknowledge wastacit. For instance,
teachers had difficulty articulating why specific problems would be difficult for
students. The authors concluded that participants’ knowledge was not organized
into acoherent network connecting the mathematics problems to student solution
strategies.

Two other studies explored preservice, rather than in-service, teachers' under-
standings of student learning. In astudy of division of fractions, Tirosh (2000) found
that prospective e ementary teachersin I sragl werefamiliar with common arithmetic
bugs (e.g., inverting the dividend rather than the divisor) but unfamiliar with
conceptual errors made by students, including the overgeneralization of whole
number rules to fractions (e.g., dividing always makes numbers smaller). In a
study that asked preservice teachersto evaluate the difficulty of algebraproblems,
Nathan and Petrosino (2003) argued that teachers with advanced subject-matter
knowledge of algebra were likely to believe that students find word problems
more difficult than symbolic problems. This result contradicts research on actual
student learning conducted by Nathan and others (e.g., Koedinger & Nathan, 2004).
The thinness of teacher knowledge revealed in these studies may result from the



Heather C. Hill, Deborah Loewenberg Ball, and Stephen G. Schilling 377

population under study, however, and not reflect the true knowledge level of prac-
ticing teachers.

These studies suggest intriguing hypotheses—for instance, that teachers' know!-
edge of students is propositional and discrete rather than richly connected to the
underlying mathematics and conceptions of student learning. However, none of
these studies explicate the domain of teacher knowledge as carefully as necessary
for large-scal e measurement and modeling vis-a-vis student achievement, as many
hopeto eventually accomplish. Thisinterest led to our own effortsto conceptualize
K CS; the content of these studies, however, helped shape our definition.

Relating KCSto Other Forms of Teacher Knowledge

Our criteria suggest that an important element in conceptualizing a domain is
delineating its boundaries and relating it to similar constructs. Figure 1 shows our
proposed model of mathematical knowledge for teaching (MKT) and can be used
to demonstrate how K CS relates to both subject matter knowledge and PCK. Each
of thesix portions of the oval isaproposed strand of MKT. Theleft side of theoval,
labeled “ subject matter knowledge,” containstwo strandsthat lie outside Shulman’s
popular conceptualization of PCK: common content knowledge (CCK), roughly
described asknowledgethat isused in thework of teaching in waysin common with
how it isused in many other professions or occupationsthat also use mathematics,
and specialized content knowledge (SCK), or the mathematical knowledge that
allowsteachersto engagein particular teaching tasks, including how to accurately
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(CCK) et Knowlfedge
0
Knowledge Kn(os\/\(/é?gge Knowledge of curriculum
at the Content and

mathematical Teaching
horizon (KCT)

\_/

Figure 1. Domain map for mathematical knowledge for teaching.
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represent mathematical ideas, provide mathematical explanations for common
rulesand procedures, and examine and understand unusua solution methodsto prob-
lems(Ball et al., 2005). CCK iswhat Shulman likely meant by hisoriginal subject
matter knowledge; SCK is a newer conceptualization. However, both are mathe-
matical knowledge; no knowledge of studentsor teaching isentailed. Theright side
of the oval represents strands associated with Shulman’s proposed PCK and
contains KCS, knowledge of content and teaching (KCT), and knowledge of
curriculum. KCS is thus a subset of PCK, which itself is a subset of the larger
construct MKT. KCS, however, is separabl e from knowledge of teaching moves—
for example, how best to build on student mathematical thinking or how to remedy
student errors. KCS also does not entail knowledge of curriculum materials. Instead,
it isfocused on teachers’ understanding of how students learn particular content.

Thus, akey part of our conceptualization holdsthat KCSisdistinct from teachers
subject matter knowledge. A teacher might have strong knowledge of the content
itself but weak knowledge of how students learn the content or vice versa. This
distinction has important implications for the construction of assessmentsin this
domain, as described next.

Developing Criteria for Developing Measures

Having outlined the theoretical and empirical basisfor KCSand discusseditsrela
tionship to similar constructs, we turn now to devel oping the notion further for the
purpose of measurement. In keeping with the conceptual distinction between KCS
and subject matter knowledge, we defined the KCS domain by stipulating that in
order to analyze an item and arrive at their answer, respondents should use know!-
edge of students' thinking around particular mathematicstopics, rather than purely
their own mathematical knowledge, test-taking skills, or other processes. Because
KCSisan amalgam of subject matter knowledge and knowledge of students, we
expect that teachers might also invoke mathematical knowledge or engage in math-
ematical reasoning in order to interpret students’ thinking around these topics.
However, they should not solely engagein mathematical reasoning when answering
these items—they must also invoke knowledge of students.

Further developing KCS for measurement opened several debates as to what
should bein the domain. One debate concernswhether the established literature on
student learning should bethe only basisfor items. It seems reasonabl e that teachers
might have KCS not yet discovered by academics, and, in keeping with thistheory,
weincluded theknowledge that observant teachers might glean from working with
students, but that have not been codified in the literature. On the other hand, such
knowledge has by definition not been codified, making the process of actually
writing items based on this knowledge hazardous. How would we know that what
item-writers had observed in classrooms held true generally? The result was only
asmall number of such items.

A second debate concerns whether to measure teachers' recognition or recall of
topicsin thisdomain, such as*knowing that” studentstend to develop in acertain
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way or make particular mistakes or whether to measure teachers’ ability to reason
about student work. Because we wereworking from aview that KCS stemsin large
part from the educational psychology literature, we erred on the side of items that
tap established knowledge. As we will report below, cognitive interviews with
teachers raised questions about this assumption.

Throughout the early conceptualization of these items, we struggled with how
much to contextualizethe KCSitems. If Shulman and othersare correct in thinking
that educational psychologists have uncovered regularitiesin student mathematical
learning and errors, these regul arities should appear independently of the teaching
methods or curriculum materials used. In addition, we quickly saw that adding even
amodest context (e.g., naming specific curriculum materialsor describing previous
lessons) not only made the items intolerably long but also might disadvantage
teachers not familiar with particular material s or techniques. In our pilot, then, KCS
was centered on the devel opment and errors made by the modal U.S. student, regard-
less of the curriculum materials, instructional techniques, and other mathematical
influences the student might have encountered. This contextual independenceisa
key, and perhaps problematic, feature of our conceptualization of knowledgeinthis
domain.

Our conceptualization of KCSwill, of course, differ from others’. However, we
argue that by being explicit in this formulation, we provide both a foundation for
our measures devel opment work and abasisfor future discussions about the nature
of teacher knowledge. We turn now to how we operationalized this conceptual -
ization into items.

WRITING ITEMS AND GATHERING DATA
TO TEST OUR CONCEPTUALIZATION

Animportant phasein our measures devel opment project was moving the concep-
tualization of the domain into practice—writing items and testing them with large
groups of teachers. With datain hand, we then needed to apply our measurement
criteria, searching for confirmation that we were, indeed, measuring areal construct
distinct from teachers' general subject matter or pedagogical knowledge and that
our measures met basi c psychometric criteria. In this section, we discussthe process
of writing items, determining what evidenceto gather to eval uate the measurement
criteria, and collecting and analyzing data.

Tranglating the Conceptualization Into Items

Oncethelarger domain map had been set, we began writing multiple-choiceitems
based on the literature cited previously and on our own classroom experiences. We
chose the multiple-choice format because one of the projects for which we were
designing itemsincluded over 5,000 teachers, many of whom responded to theitems
multipletimesover aperiod of 3 years. Inthiscontext, open-responseitems, which
entail significant “grading” of answers, were not feasible. In developing items, we
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found that it was helpful to think about what mathematically able individuals who
do not teach children would not know. For instance, although professional mathe-
mati cianswould know how to produce adefinition of even numbers, multiply atwo-
digit number by aone-digit number, and write five hundred and twenty-six as 526,
they may not know the grade level sat which students, on average, master theseidess
and tasks. They are also unlikely to be familiar with common errors that students
make while developing proficiency with these ideas and procedures.

Aswe progressed, we saw that our itemstended to fall into four major categories:

» Common student errors:; identifying and providing explanationsfor errors, having
asense for what errors arise with what content, etc.

 Students' understanding of content: interpreting student productions as sufficient
to show understanding, deciding which student productionsindicate better under-
standing, etc.

 Student developmental sequences: identifying the problem types, topics, or
mathematical activitiesthat are easier/more difficult at particular ages, knowing
what studentstypically learn “first,” having asensefor what third graders might
be able to do, etc.

» Common student computationa strategies: being familiar with landmark numbers,
fact families, etc.

The Appendix contains four sample items. These items are imperfect; statistical
analyses showed they were not sufficiently related to the construct measured by the
majority of piloted itemsto retain in our item pool. The reader may be able to see
why theseitemsfailed just by reading them. They are presented here, however, to
give asense for how we represented the four major categoriesin item-writing.

In item 1, teachers are asked to provide the most reasonable explanation for
Bonny’s error. Although Bonny can count out 23 checkers serially, she does not
understand that the“2” in 23 indicatestwo groups of ten, or 20 checkers. Evidence
suggeststhat although Bonny understands how large 23 is(she can count and repre-
sent 23 serially), she does not understand the meaning of the placesin the number
23. Thismisunderstanding has been documented ascommon to childreninthe early
elementary grades (Kamii, 1985, p. 61) and may be quite familiar to teachers expe-
rienced with working with studentsin this particul ar area.

Initem 2, Mrs. Jackson must analyze three students work on multidigit addition
problemsto determine who has made the same error. Students (1) and (11) have made
thesameerror, carrying al0instead of a20; student (111) hasfailed to add numbers
inthe ones column correctly. Both errors are common, according to the* buggy algo-
rithm” literature and teachers interviewed for this project; as well, diagnosing
student errorsin computation is a common task of teaching.

Initem 3, Mr. Fitzgerald intends to design an assignment that would show him
whether students can correctly order decimals. Weintended herethat Mr. Fitzgerald
would recognize that students will be able to put options (a) and (b) in order
correctly whileignoring thedecimal point. Such students, according to Resnick and
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colleagues (1989), are applying whole number rules to decimals. Only option (c)
would require students to understand, for instance, that .565 is a smaller number
than 4.25 to order the decimals correctly.

Finally, item 4 is an open-ended item that asks teachersto explain Jill’ sincor-
rect answer to the subtraction problem 51 — 18. Thisitem was not piloted as part
of our large-scale measures development but instead included as part of our
cognitive interviews (see below), both to glean information on how the format
of an item might affect its performance and to devel op response choices for the
item. To get this item correct, teachers would have to recognize that Jill
“subtracted up” (8 — 1 =7), rather than trading tensfor ones. This error has been
identified as a common “buggy algorithm” by the cognitive psychology litera-
ture on thistopic (Ashlock, 2002; VanLehn, 1989).

Collecting and Using Data to Test Our Conceptualization

At the outset of thisarticle, we argued that any measurement effort must collect
and use datato test the conceptualization of the measures, to determine whether the
measuresdoin fact differentiate well among individuals, and to perform validation
work. In our case, this effort took several directions. At a minimum, we felt we
needed to collect data from large samples of teachers to conduct construct identi-
fication procedures and reliability analyses. Because we collected this data as part
of an evaluation, it also allowed usto completearelated validity check: determining
whether teachers' growth on our measures is sensitive to their reports of learning
about how students learn mathematics. Later, we added cognitive interviews to
provide checks on our assumption that teachers use knowledge of students to
answer the items.

Construct identification and scaling. We piloted the items in California’'s
Mathematics Professional Development Institutes (MPDIs), where our larger set
of measures (both around subject matter knowledge and KCS) served as part of the
evaluation of that program. Initiated in 2000, the MPDIs involved both mathe-
maticians and mathematics educatorsin the design and implementation of content-
focused, extended |earning opportunities for teachers. Teachers attended summer
programsof 1to 3 weeks duration (between 40 and 120 hours), participated in up
to 80 hours of school-year follow-up, and received stipends of approximately
$1500 for their participation.

Although afocus on student learning of mathematics was only atertiary goal of
the MPDIs, where the main focus was on improving teachers' subject matter
knowledge, visitsto several MPDIs over the course of thisinvestigation reveal ed
that some had, infact, included afocus on student learning of content aspart of their
curriculum. In one site visited, for instance, teachers examined student computa-
tional work for errors, explained those errors, and discussed how they would
remedy them in teaching. In another, teachers studied the literature describing which
problems students found difficult and easy and examined methods that students
might use to solve various types of problems. In gtill other sites, teachers viewed
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videotape of students solving problems and examined student work. However, work
on student thinking and learning was not universal. In several other sites observed,
no focus on student learning was apparent. Thisvariation isactually to our benefit,
aswe can useit to examine theimpact of different amounts of opportunity to learn
these topics on teachers’ KCS performance.

By legidative design, every teacher attending an elementary number and oper-
ationsMPDI wasto have completed apre-post evaluation form. These formswere
designed by our project and contained items intended to assess both teachers
subject matter knowledge and KCSin elementary number and operations. Teachers
cycled through parallel forms of the assessment during the summer portion of the
program, with one group taking form A asapretest and B asa posttest, another group
taking B as a pretest and C as a posttest, and so forth. The parallel form structure
mitigated against memory effects, where teachers retaking the same form might
recall their answersto the previousform or have discussed answerswith others prior
to the posttest.

Numerous problems plagued the 2001 administration of the pre-post assessments,
including missing booklets and teacher and professional development provider
refusals(see Hill & Ball, 2004, for details). Neverthel ess, by combining all reason-
ably complete pretests and posttests, we reached 640 responses to form A, 535
responses to form B, and 377 responses to form C. Each form contained itemsin
(&) number and operations common and specialized content knowledge; (b) number
and operation KCS; and (c) patterns, functions, and algebra common content
knowledge. By including multiple hypothesized domains on the assessment instru-
ment, we were able to conduct the construct identification analyses described
below. We also included a set of “teacher opportunity to learn” items in which
teachers reported on the content of their MPDI. These reports were used in the
convergent and discriminant validity analysis, described below.

The first analysis conducted with this data was scaling work, including factor
analysis and item response theory (IRT) measure construction. These analyses
allowed insight into acentral question of thisarticle: Do items capture KCS or do
these items measure a more general dimension, such as overall mathematical
knowledge? And by extension, doesthe general population of teachers have akind
of “knowledge” that can be labeled KCS? Factor analysis can help identify
constructs, first determining the number of separate constructs on forms, then
providing information on which itemsrelate to which constructs. On our forms, for
instance, there might have been only one construct despite the presence of both CK
and KCS items; if so, we would have said that there is no distinction in our data
between these two theoretical categories. Or afactor analysismight indicate theform
contains two constructs, and items may group onto “CK” and “KCS’ factors, as
theorized. Other possibilitiesexist, and we used ORDFAC (avariant of TESTFACT,
a common factor analysis program for test data; Schilling, 2005) to help us sort
among these possibilities.

Once factor analysis confirmed the number of constructs on the form, we
proceeded to scale items. Our factor analysis did indicate multidimensionality,
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meaning scaling ideally would proceed using multidimensional IRT models.
However, such models require more than a thousand cases for proper estimation,
data we did not have at the time and were reluctant to collect, given the fact that
thiswasthefirst pilot of such items. Instead, we used Bilog (Zimowski, Muraki,
Mislevey, & Bock, 2003), software commonly used in unidimensional scale
construction. Bilog reportstwo useful pieces of information for understanding how
well aset of items measure aconstruct in agiven population. Oneisthereliability
of the items, or how accurately the items distinguish between individuals.
Reliability isreported on a0-1 scale, with lower valuesindicating scalesthat either
cannot distinguish accurately between differencesinindividual knowledge, or can
only accurately distinguish gross differencesin knowledge (e.g., between ascholar
of student learning and anoviceteacher). Higher valuesindicate an ability to more
precisely distinguish between individuals closer together on the underlying
construct (e.g., two teachers with only subtle differencesin their level of knowl-
edge). The second useful descriptor isthe test information curve maximum. If one
imagines a hypothetical normal distribution of teachers along an x-axis from
lowest-knowledge to highest-knowledge, the test information curve maximum
corresponds to the point on that distribution where the items’ ability to differen-
tiate among teachersisthe highest. Ideally, atest information curvefor ageneral-
purpose assessment would be centered on the peak of the normal distribution, since
that is where the majority of individuals' knowledge level is located. However,
assessments may be more difficult—with their test information curve peaking at
a standard deviation or more above the average teacher—or less difficult. This
information iscritical in examining how useful the assessment will bein research
and evaluation.

Convergent and discriminant validity. We also used data from the MPDIs to
conduct convergent and discriminant validity checks. In convergent validity,
analysts seek to determine whether constructsthat should relate to one another actu-
ally do so; indiscriminant validity, analyses confirm that constructsthat should not
be related are, in fact, not. In our case, any gains in teachers' KCS performance
should relate to their reports of having had opportunities to learn KCS but not to
learning other things, such as reports of having had opportunities to learn subject
matter knowledge. To determine whether this was the case, the same instrument
that carried the KCS items also asked teachers to describe their MPDI’ s content.
Two Likert items asked teachers whether they focused on how students learn
number concepts and operations; these formed a scale with reliability .73 and
mean 3.24 on a 1 (low) to 4 (high) scale, indicating that many teachers reported
focusing on these topics. Another two items asked teachersto report on how much
their MPDI focused on subject matter knowledge in number and operations; these
itemshad areliability of .60 and amean of 3.44, suggesting that thiswas aso amajor
focus of the workshops. A single item asked teachersto report the extent to which
the MPDI contained “ student work for participantsto study” ; the mean of thisitem
is2.42 onascaeof 1 (low) to4 (high). Finaly, four items asked teachersthe extent
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to which the MPDI provided an opportunity to learn purely mathematical topics,
including proof, justification, representation, and communication. Although this
variable positively predicted growth in teachers' subject matter knowledge during
theingtitutes (Hill & Ball, 2004), it should not predict teacher growthin KCS. Here,
itsmean is 3.28 on ascale of 1 (little opportunity) to 4 (much opportunity) and its
reliability is.74. Finally, information about the length of institutes was added to
the data from administrative records.

To enable this validity analysis, our parallel forms were equated using conven-
tional IRT linking methods (see Hambleton, Swaminathan, & Rogers, 1991,
McDonald, 1999). Details on the KCS scalesin number and operations are reported
in Table 1. Teachers ability isreported in standard deviation units, with O repre-
senting the average teacher, +1 representing ateacher one standard deviation above
averagein KCS, and so forth. To explorereasonsfor differential growth in teacher
knowledge, we ran linear mixed model regressions (Bryk & Raudenbush, 1988;
Singer, 1998) using teachers' performance on the posttest as an outcome variable,
and predicted these outcomes using pretest score and the MPDI content indicators
described earlier. These modelswere run in SAS (SAS Institute Inc., 1999).

Cognitiveinterviews. |n addition to determining convergent validity, wewere also
interested in amuch more rudimentary form of validity: determining whether what
we conceptualized as KCSwas actually measured by the items. | nstead of tapping
individuals' KCS, for instance, our items might measure individuals' capacity to
use test-taking strategies. To determine whether such alternative hypotheses were
true and to learn more about the knowledge used to answer the items, we turned to
cognitive interviews.

A full account of samplerecruiting, characteristics, instrumentation, and proce-
dures can be found in Hill, Dean, and Goffney (2007); we briefly describe each
here to provide context for the results below. Fifty-seven K—6 teachers were
recruited from three Midwestern school districts—two serving disadvantaged
student populations and one serving a socioeconomically mixed group of students.
Fifty of these teachers returned survey forms; from these 50, we selected 26 for
interviewson the basis of either low or high CK scores. Interviewstook placefrom
1 week to 2 months after the return of the surveys. During the interviews, teachers
were asked to report on how they answered questionsrelated to 17 stems; the exact
probe was “Why did you choose [answer choice]? What process did you go
through to decide?’ This protocol constitutes what Sudman, Bradburn, and
Schwartz (1996) would term a“ retrospective think-aloud,” and provides arough
sensefor the major characteristics of the cognitive processes respondents engaged
asthey answered items.

Subsequent to transcribing and entering teachers’ interviewsinto QSR N6 (QSR
International, 2002), aprogram that facilitatesthe management, coding, and analysis
of qualitative data, we categorized each teacher’ s response to each question based
on the knowledge invoked to answer. Coding for each item was done by catego-
rizing teacher responses until coders reached 70% or greater agreement, at which
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point one individual completed coding the rest of the item. This process allowed
coders to come to agreement on how the coding scheme should be applied to
particular types of answers within each item. The codes themselves, described
below, were devel oped by reading, discussing and coding teachers' responsesto a
variety of items.

RESULTS: APPLYING THE MEASUREMENT CRITERIA

I dentification of a KCS Construct

Wefirst asked whether we could identify aK CS construct in the data. Thisisan
important question: If theitemsintended to measure KCS appeared no different from
the items intended to measure subject matter knowledge, we could not claim that
they measured the body of knowledge aswe conceptualized it. Conversely, finding
a KCS factor would suggest that teachers do have discipline-specific knowledge
of student learning, as many have hypothesized.

Extensiveresultson factor analysesareincluded in Hill, Schilling, and Ball (2004)
and Schilling (2007) and will be only briefly reviewed here. Exploratory factor
analyses did indicate that the KCS items formed their own separate, interpretable
factor but with awrinkle: Someitems meant to tap teachers' KCS scaled with items
meant to tap CK, although no obvious differences emerged between theseitems and
those that scaled on the KCS factor. In aspecialized confirmatory factor analysis,
whereitemswereallowed toload either ona“general” or “KCS’ factor, most items
loaded on both, suggesting either that (a) some individuals used KCS and others
used subject matter knowledge to answer these items, or (b) individuals used a
combination of both KCS and subject matter knowledge to answer the items. This
indicates that at least in the population that responded to our instruments, teachers
used both subject matter knowledge and KCSto answer theseitems. It also suggests
an answer to one of the central questions of this article: There is an identifiable
“knowledge of content and students” within the teaching population, at least with
the particular set of items piloted and in the particular population of teachers
included in our sample (Hill et a., 2004). However, thisknowledge may rely in part
onteachers’ underlying subject matter knowledge and isimperfectly discerned with
the set of items used in our current instruments.

Meeting Standards for Reliability

The next step in analysis was to determine the reliability of the KCS items on
each form. Reliability is a critical diagnostic in assessing the utility of a set of
measures, and it can be thought of intuitively in several ways. Most formally, reli-
ability is defined as the proportion of true score variation in the data to true score
and error variation combined, or the ratio of “signal” to “signal + noise” in a
measure. Noise may result from several sources: (1) aset of itemsthat do not cohere
aswell asintended (e.g., a set where 10 items measure construct A and another 5
measure construct B); (2) the presence of itemsthat fail to help distinguish between
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knowledgeable and less knowledgeable individuals; (3) a set of items that are
mismatched to the ability level of the population being measured. In general, reli-
abilitiesof .70 or above are considered adequate for instrumentsintended to answer
research and evaluation questions using relatively large samples.

Reliabilitiesfor the formswerelow, relative to industry standards. In a previous
article, wereported IRT reliabilitiesas .71 for form A, .73 for form B, and .78 for
form C (Hill et a., 2004). These reliabilities described a sample that combined
pretests and posttests for each form, a decision we made in order to allow the use
of an IRT model that overweights highly discriminating itemsin the estimation of
reliability. Table 1 showstherdliabilitiesfor teachersand formsincluded in the pre-
post evaluation reported below. Because we had a smaller sample size* the IRT
model chosen did not overweight highly performing items, and reliabilities were
slightly lower than our original report. These reliabilitieswere lower than industry
standards suggest are sufficient for use in research and evaluation projects. Said
another way, these measures cannot as accurately discriminate among teachers of
different knowledge levels aswe would like, often misplacing teachers relative to
one another and to specific benchmarks (e.g., an average teacher).

Tablel
Reliabilities of KCS Scales in Number and Operations?
Number Number Test information
Scale stems items Reliability curve maxP
Form A
Pretest 14 20 .60 -1.5
Posttest 14 20 .67 -1.12
Form B
Pretest 14 19 .68 -1.0
Posttest 14 19 .65 -1.25
FormC
Pretest 15 21 .58 -1.37
Posttest 15 21 .69 -0.875

aThese are one-parameter IRT models. Someitems are nested beneath one common stem, e.g., Appendix
item 1. Thus the number of items is more than the number of stems on each form.
bThese test information curve maxima are reported prior to form equating.

One possible reason for these lower reliabilities is the multidimensionality
found in the factor analysis. When a set of items draw upon more than one type
of knowledge (i.e.,, CK and KCS), the items do not cohere as tightly as if al
measured the same construct. But other explanations are also suggested by diag-

1 “Two-parameter models,” in which items that strongly discriminate between teachers are over-
weighted, typically require several hundred respondents for proper estimation. Here we used one-para-
meter models, which do not weight items. When each item isweighted equally, reliabilitiesfall because
the proportion of the scale composed of poorly performing itemsisincreased.
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nostic information about the overall scalesand individual items. One common prac-
tice in IRT analyses is to examine each item’s ability to discriminate between
teachers at a particular ability level using a metric called the “slope” (for atech-
nical interpretation, see Hambleton et al., 1991). Generally, items must have
slopes above .4 for continued use. Across al three forms, roughly 15% of items
failed thiscriterion. Thissuggeststhat our items often failed at capturing elements
of knowledge about studentsthat existed in the popul ation of teachers participating
inthisstudy; in other words, much of what we hypothesized to be an aspect of this
knowledge did not help distinguish between knowledgeable and |ess knowledge-
able teachersin this domain.

Another explanation exists for the relatively low reliabilities. The test informa-
tion curve, whichidentifiesthelevel of knowledge at which the scal e best measures
individuals, suggeststhat for all three forms, best measurement occursfor teachers
between 1 and 2 standard deviations below average. Figure 2 shows thisin more
detail. The x-axisistheteachers' scalescore; O typically correspondsto the average
teacher in the popul ation under study, with negative scoresindicating less knowl-
edgeabl e teachers and positive scores indicating more knowledgeabl e teachers. In
thiscase (form A pretest), themost information (shown asasolid line and measured
on the left y-axis) is provided for teachers between two standard deviations below
average; a corresponding standard error estimate (shown as a dotted line and
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Figure 2. Test information curve.
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measured on theright y-axis) showsthat errorsin score estimation rise precipitously
for individuals above average.

Thisfinding has practical implications. First, identifying highly knowledgeable
teachers and tracing growth among groups of teachers who become highly knowl-
edgeablewill be difficult. A second implication relates back to how item construc-
tion took place. Because we hoped to be able to make distinctions among teachers
of al knowledge levels, we wrote items intending that the average score on the
assessment would be 50%. Thisdesign implied including difficult items, ones that
perhaps only 20-40% of the population would answer successfully, in order to
discriminate between highly knowledgeabl e teachers and very highly knowledge-
ableteachers. Instead, on only 13 of 59 items did teachers answer correctly lessthan
50% of the time—and only 3 items had a frequency correct of 25% or fewer. This
is quite off the target, especially considering that many of the items teachers
“missed” were onesthat our analyses showed did not actualy captureteachers KCS.
Reasons for this are explored in more detail below.

Capturing KCSas Conceptualized

Factor analysis and measure construction provide one method for checking the
validity of these items—that is, whether the hypothesized ability we measured is
actually a coherent domain. If results accord roughly with theory, the theory is
neither disconfirmed nor confirmed; the factors we identified, for instance, might
represent test-taking skills or even reading ability. To learn more about what we
measured, our cognitive interviews contained six KCS items focused around
common student errors in number and operations; five were multiple choice and
onewas open-ended (see Appendix item 4). Hill et al. (2007) described the complete
coding scheme used to classify teacher answers; we include here only the expla-
nations prevalent in answering KCSitems:

» KCS—Teacher invokes familiarity with students’ errors as partial or complete
explanation for selecting their answer (e.g., “My studentsdo thisall thetime.”)

» Mathematical reasoning—Teacher uses mathematical deduction, inference, or
other type of reasoning to support her answer (e.g., “Looking at these numbers
listed in the problem, (¢) must betrue.”)

 Test-taking skills—Teacher uses information in the stem, matches response
choicesto information in the stem, or works to eliminate answers as method for
solving problem (e.g., “1 knew it wasn't (), thus (d) ‘all of the above’ couldn’t
betrue.”)

Answers could be coded more than once—for instance, if ateacher used both test-
taking skillsand KCS. Additionally, answers coded “KCS’ had to bethe KCS the
item was meant to capture rather than knowledge of students used to support an
“incorrect” answer, although subsequent analyses relaxed this assumption.

Table 2 shows the percentage of teacher responses for each item. Clearly, KCS
was an often-supplied explanation for answers; in 42% of cases, teachersreferenced
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their experience with children to support their chosen answer. In some cases, the
reference was spontaneous. While discussing Jill’s buggy subtraction (Appendix
item 4), ateacher said, “ She' sjust subtracting the smaller digit in each place from
the larger, not regrouping. And | seealot of that.” In others, an interviewer probe
triggered teachers statement of familiarity with the student error (e.g., “1: Andthat’s
a common problem you' ve seen with your kids?’ R: “Huge. Huge. Huge.”). Not
surprisingly, teachers’ familiarity with these student errors was greatest when they
taught children of similar age and developmental levels. Thissuggeststhat teachers
do have knowledge of students common errors and that these items partially
tapped this knowledge.

Table2
Reasons for Item Responses—Validation Interviews

Mathematical Test-taking  Row

Items KCS reasoning skills total

Bonny’s problem with 23 13 9 13 35
(37%) (26%) (37%)

Student error with base-10 blocks 18 6 9 33
(55%) (18%) (27%)

Mrs. Jackson always carry 1 16 25 1 42
(38%) (60%) (2%)

Student misunderstanding 16 6 9 31
of equal sign (52%) (19%) (29%)

Ordering decimals assignment 1 25 1 27
(4%) (93%) (4%)

Jill’ s buggy subtraction 19 12 0 31
(61%) (39%) (0%)

However, weclassified an equal number (42%) of explanations as mathematical
reasoning. In some cases, mathematical reasoning seemed central to answering the
item correctly, asin Appendix item 2:

| said (a), that (I) and (1) had the same kind of error. | worked them out again to see
kind of what they were and when | did it | saw that they were carrying aone instead of
atwo in both cases. And for the third one, it was their addition, that they just had the
wrong humber in the ones place so they either added wrong or—. So | saw (1) and (11)
were the same type of problem they had.

Here, teachers must perform amathematical analysisin order to answer the problem
correctly; in fact, teachers need not know whether thisisatypical student error.

In another response by the same teacher, mathematical reasoning took placein
conjunction with KCS:
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| said Jill [Appendix item 4] might not have known how to subtract eight from one so
instead she did eight minus one is seven so she went down to the one and subtracted
that way. And then . . . but she can subtract one from five so she got four. So | wasjust
thinking that she didn’t regroup it to give her that eleven to subtract the eight from and
didn’t check what she was doing because looking at it, it doesn’t make sense. And |
seekids do that all thetime.

Here, we might argue that thisteacher’ sability to analyze the mathematical problem
and familiarity with students' errorsboth facilitated her answer. For thissameitem,
however, someteachers answers appeared to rely more heavily on familiarity with
the student error; others appeared to rely more heavily on the mathematical analysis.
In each instance, such thinking usually led to a correct answer.

That teachers might use either KCS, mathematical reasoning, or both to get these
items correct isnot surprising. Logically, teachers must be ableto examine and inter-
pret the mathematics behind student errors prior to invoking knowledge of how
studentswent astray. This multidimensionality wasin fact reflected in our original
specification of KCS as amalgamated knowledge of content and students, and it
helps explain the factor analysis findings described above. Unfortunately, it also
leads to problems of measurement, because items vary in the extent to which they
draw onthese two dimensions. Wealsofind it particularly troubling that the cogni-
tiveinterviews suggest that many of these problems can be answered in the absence
of the KCSthey wereintended to assess.? Thismay help explain high teacher scores
onthisconstruct, asevenif KCSisnot present, mathematical reasoning and know!-
edge can compensate.

A third category of explanation for answers involved test-taking skills. Table 2
shows that test-taking strategies were prevalent in three of the five closed-ended
items presented to respondents. |n addition to providing evidence that these items
tap unintended constructs, the use of test-taking skillshere a so explainsthe higher-
on-average scores for the multiple-choice items. By crossing responses coded as
“using test-taking skills” with the correctness of the response, we see that of 93
responses that were coded as test-taking, 76% resulted in a correct answer. For
subject matter knowledge items, by contrast, test-taking strategies as often led to
incorrect answers (49%) as correct answers (51%). Thisfurther amplifiesthe prob-
lems of measurement wefaceinthisares; if thereatively common use of test-taking
skills were not problem enough, the use of test-taking skills for KCS items leads
respondents toward correct answers.

Thecognitiveinterview dataoffer severa other cluesabout problems of measure-
ment in this domain. First, very few teachers selected outright “wrong” answers,
or distractors, to problems such asthe Bonny and decimal ordering items (A ppendix
items 1 and 3). In the MPDI pre-post sample, for instance, only 1% answered (a)
and 4% answered (b) for the first; only 2% answered (c), and 1% answered (d) for
thelatter. The most common incorrect answer wasthe“all of the above” response,

2 A related study (Hill, Dean, & Goffney, 2007) found that mathematicians and non-teachers tended
to do quite well on this set of items via mathematical reasoning alone.
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a pattern we saw repeated on many other itemsin our closed-ended survey. This
suggests a hypothesis about the domain under study: that expert teachersare differ-
entiated from nonexperts only by the specificity and detail of their interpretations
of student problems. Teacherswithout such knowledge may accept many different
explanationsfor student errors, be unableto discriminate common strategies, or be
unableto identify developmental pathways—and thus accept any plausible answer.
For this reason, measurement may be difficult in the context of a multiple-choice
format, which depends heavily upon item distractors matching individuals' miscon-
ceptions and faulty reasoning processes. Whether thisis the case or not isatopic
for future, more qualitative, research.

A problem with the decimal ordering item (Appendix item 3) suggests afurther
complication, however: that the knowledge we intended an item to capture was
unevenly measured because teachers had other knowledge of student errors and
devel opmental sequencesthat “interfered.” Inthe original coding, we specified that
answers coded “KCS’ had to match the KCSintended to be measured by theitem.
In relaxing thisassumption, we seethat teachers’ “other” KCS often played alarge
part in their reasoning process. In the decimal ordering item, for instance, some
teachers commented that students sometimes make errors when they see awhole
number (7 in choice (b)) mixed with decimals, making this option attractive.
Although wedid not intend to measure this“ knowledge of students,” it seemsalegit-
imate defense of (b) as a correct answer. Among the interviewed teachers, in fact,
none answered (c) on the basis of the common “ignore decimal point” error,
athough roughly half commented to interviewersthat they were familiar with this
error. With the Bonny problem (Appendix item 1), asimilar problem emerged:

Thisismy kids. Bonny thinks that two and twenty are the same. | put that down. And
then | got to Bonny doesn’t know how large twenty-three is, and then Bonny doesn’t
understand the meaning of the places. And see, all of the above, for my kids, that's
true. .. .| said all of the above.

Thisteacher’ s comments suggest either that she is a nonexpert who cannot distin-
guish between incorrect and correct explanations for Bonny’s errors or that there
isan element of truth in the distractors, based on her experience in the classroom.

These problemslead to aquestion: Can teachers’ KCS be measured in multiple-
choiceformat? Unfortunately, thereisno “ proof of concept” item, in the sense that
factor analyses demonstrate it measures KCS; our interviews demonstrate teachers
use KCSto answer it, theitem statisticsindicateit performswell in distinguishing
among teachers, and it isreasonably difficult. However, our interview covered only
six KCSitems; our larger item pool contains several items that meet at least the
psychometric criteria and a few that perform exceptionally well. Further cogni-
tive interviews will help clarify whether these items do, as we suspect, better
measure KCS.

Aninspection of these successful items may provide hintsasto future directions
for measure development. By successful, we mean those that discriminate among
teachers of different knowledge levels, and in particular those that discriminate
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among highly knowledgeable and very highly knowledgeable teachers, where our
scaleswereweakest. Onetype of highly discriminating and at |east moderately diffi-
cult item asks teachers to inspect different student productions, and then make a
determination about which knowledge was either a8) most advanced, devel opmen-
tally or b) reflected understanding of the mathematics, rather than procedural or
factual recall. Another set of successful items asks teachers to determine which
computational strategies studentswould belikely to use or not usein modeling prob-
lems or remembering basic facts. A third set of successful items asks teachers to
supply thereasons for common student misconceptions or procedural errors. These
all seem promising directions for future item development.

Results from the cognitive interviews suggest lingering problems with our
conceptualization of this domain, including the need to answer questions
surrounding whether it consists of recognition, recall and/or reasoning, and whether
the research base or teachers' own non-research-based K CS should predominate;
wediscussthese at morelength in the discussion and conclusion. Resultsfrom the
cognitive interviews, however, do suggest explanations for the lower reliabilities
and test information curvesreported in the psychometric analysis: teachers' reliance
on mathematical reasoning and test-taking strategies might have inflated scores.
Results al so suggest that KCS may be at | east aportion of what has been measured
by this set of items. With thisin mind, we turn next to the pre-post MPDI analysis
asafinal check onvalidity.

Demonstrating Convergent/Discriminant Validity

Another approach to validity examinesthe associations between a set of measures
and other constructsto which they are hypothesized to relate (convergent validity)
and not relate (discriminant validity). Our pre-post analysis of the MPDI data
provided the opportunity to take such an approach. We asked whether any growth
in teachers’ KCS scores related to teacher reports of covering KCS-related topics
intheir institute, rather than their reports of covering subject matter knowledge more
generally.

Overall, teachers gained .21 standard deviations between pretest and posttest on
the KCSmeasure. A t test showed that thisgainisstatistically significant (different
from zero) at p < .0001. Substantively, this gain correspondsroughly to a1-2 item
increasein the raw number correct on our assessment. Thisaverage, however, masks
variation in MPDIs; teachers in some institutes garnered 2-item gains, whereas
othersdid not gain at all. An analysis of variance showed that these institute-level
differences were significant (F = 3.21, p < .0001). Results from an unconditional
mixed model (described below) suggest that 9% of the variation in gain scoreslay
between institutes, rather than between teachers within institutes.

Our cognitive interview results suggest that the overall growth exhibited on
these measures might have resulted from improvements in teachers actual KCS,
or aternatively, in teachers' subject matter knowledge. Improvements in either
would have boosted a teachers' score, assuming results from the cognitive inter-
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views hold across the item set. To investigate this, we ran mixed modelsto deter-
minethe relationship between MPDI foci and teachers’ gain; if teachers' gain scores
were morerelated to their reports of learning K CS than pure subject matter knowl-
edge, this adds to the evidence that the measures do capture some aspects of KCS.
We also controlled for the pre-post combination of forms that teachers took,
because results from the factor and item analyses suggested multidimensionality
inour forms. If there wereimbalances acrossformsin the extent to which KCSitems
drew on the KCS vs. general factors, these pre-post dummy variables would iden-
tify and control for them.

Table 3 shows correlations among independent variables, and Table 4 shows
results from the mixed model analyses. In Model 1, we see that teachers' pretest
score is the best predictor of their posttest score. Length of the institute is also
marginally significant, with longer institutes producing stronger teacher gains.
Teachers' reports of institute focus on KCSwere significant at p < .05, suggesting
that when teachers studied how studentslearn, they performed better on our posttest.
Finally, the variable representing institutes that used student work as part of the
curriculum was not significant and closeto zero. It isdifficult to say what thismeans,
given that thisisa 1-item variable, and thus prone to error of measurement.

Table3
Correlations Between Predictorsin Pre-Post Analysis

Focus on
Focus on proof, analysis,
Focuson Studied  subject matter representation, Length of
KCS  studentwork knowledge communication MPDI

Focuson KCS 1.00 53** 53** A4 -.05
(426) (422) (400) (426) (426)

Studied student 1.00 .10* 29%* .06
work (423) (397) (423) (423)
Focus on subject 1.00 A45%* 35x*
matter knowledge (401) (401) (401)
Focus on proof, 1.00 A3
analysis, (427) (427)

representation,
communication

Length of MPDI 1.00
(429)

* p< 0L ** p < .000L.

Because of the small number of institutes and the correlation between the KCS
and subject matter knowledge focus variables (r =.34), we could not jointly enter
both into the same model. Doing so would have allowed us to identify whether
one, the other, or both were responsible for teachers' growth on this construct.



394 Unpacking Pedagogical Content Knowledge

Table4
Pre-Post Analysis of Learningin MPDIs

Model 1 Model 2

Intercept -35 -54
(.24) (.26)
Pretest score .58 .58
(.04) (.04)
Focuson KCS 13
(.06)**
Studied student work -.05
(.04)
Length of MPDI 14* A2
(.06) (.07)
Focus on subject matter knowledge .06
(.07)
Focus on proof, analysis, representation and communication 10
(.07)
Group B -24 -24
(.16) (.16)
Group C .30 .29
(.19) (.19)
Variance components
Institutes .04 .04
Residual 42 43
Akaike Information Criteria (AIC) 877.0 883.8

Note. Numbersin parentheses are standard errors.
* p<.10.**p < .05.

However, Model 2 shows the effect of the subject matter focus variable and a
related variable—focus on proof, analysis, representation, and communication—
onteachers’ outcome scores, controlling for pretest scores. Thislatter variablewas
shown to significantly predict teachers’ growth in subject matter knowledge (Hill
& Ball, 2004) and captures teachers’ reports of the MPDI emphasizing these
aspects of mathematical work. That neither it nor the subject matter focus predi ctor
are significant here suggests that these scal es have measured, in the context of the
MPDI evaluation, growth in teachers KCS.2 Although there are indications of
significant problems in the measurement of teacher knowledge in this area, the
items and scales we developed are at least moderately sensitive to teachers
reported opportunitiesto learn KCS.

3 More evidencefor this contention is provided by the model fit statistic AIC, which isslightly lower
for Model 1 than Model 2. A lower AIC indicates better model fit.
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DISCUSSION AND CONCLUSION

Results from our analysis of the KCS items suggest several conclusions. First,
we found that teachers do seem to hold “knowledge of content and students.” The
factor analyses of multiple forms and interviews with teachers suggest that famil-
iarity with aspects of students’ mathematics thinking, such as common student
errors, isone element of knowledgefor teaching. To thoseinterested inidentifying
aknowledge base for teaching that might guide the preparation of teachers or the
content of professional devel opment, verifying that such knowledgeisdistinct from
pure content or pedagogical knowledge is an important first step. Although it
remains to be seen whether and how such knowledge, as we have measured it, is
related to improving student learning in mathematics, our resultsbol ster claimsthat
teachershave skills, insights, and wisdom beyond that of other mathematically well-
educated adults.

We also learned, however, that measuring such knowledge is not a straightfor-
ward enterprise. Although teachers' pre-post MPDI scores were responsive to
reportsof MPDI focus on students and content, resultsfrom other psychometric and
validation analyses were much more equivocal. Scales, on thewhole, were not nearly
reliable enough to justify dissemination and use in research. Scales were poorly
targeted, measuring |ess-than-knowl edgeabl e teachers sufficiently but few others
well. Both psychometric work and teacher interviews suggested that withinthe KCS
domain, therewas strong multidimensionality. Multidimensionality was, of course,
part of our specification of thisdomain. However, the type of multidimensionality
that emerged—with itemsrelying in different amounts on mathematical reasoning,
knowledge of students, and perhaps even on a special kind of reasoning about
students’ mathematical thinking—yields difficultiesin the construction of parallel
forms and teacher scores.

Overall, the effort described here resulted in a glass half full. More important,
however, it aso resulted in key lessons for future efforts to measure teacher
knowledge in this and similarly structured domains. We consider three types of
lessons: for conceptualization, for measurement, and for the criteria we proposed
for undertaking both.

First, welearned that this domain remains underconceptualized and understudied.
Although most scholars, teachers, and teacher educators would agree that teachers
knowledge of students' thinking in particular domains is likely to matter, what
constitutes such “knowledge’ has yet to be understood. Does KCS consist of facts
that the research literature has uncovered about student learning? Of observations
that experienced teachers make about student learning and errors?1f the former, the
research base is far from complete; we know far more about students' knowledge
and thinking in areas such asfractions, early arithmetic, functions, probability, and
geometry than we know in domains such as measurement, integers, and number
theory. If the latter, the situation is similarly complicated. Research in educational
psychology may miss important aspects of knowledge that teachers develop from
their work with learners. Consequently, our items, by drawing on that research, may
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have asked questions that do not resonate with teachers' experience and may have
missed posing questions that tap the professional knowledge that teachers hold
implicitly. Mapping thisknowledgeislikely to be along and time-intensive process;
however, it is necessary for the development of these and similar items.

Further, the very notion of “knowledge of content and students” asknowledge needs
further development. Teachers“know” that students often make certain errorsin partic-
ular areas, or that some topics are likely to be difficult, or that some representations
often work well. But teachers also reason about students' mathematics: They see
student work, hear student statements, and see students solving problems. Teachers
must puzzle about what students are doing or thinking, using their own knowledge
of the topic and their insights about students. Some teachers may do this with more
precision and skill than others, but we lack theory that would help us examine the
nature of teachers’ mathematical-pedagogical reasoning about students. Someteachers
may “know” things about students in particular domains, whereas others may be
figuring out students' thinking as they teach. Thus we are probably measuring
different skills and knowledge for different teachers, even within the same items.

In sum, our work suggests that the conceptualization of the domain is far from
straightforward. In our case, we attempted to build the ship while sailing it—by
writing items to help push our conceptualization and definition forward. Even
though this proved theoretically productive, it no doubt contributed to our difficul-
ties. We suspect that other research groups, however, are sailing similar boats. Our
adviceistothink carefully about the nature of the domain to be measured, including
closeanalysis of thetypes of knowledge and reasoning that teachersdo intheir work.

The second set of lessons we draw involves measuring knowledge in this and
similar domains. First, as originally formulated by Shulman and in our own theo-
retical work, this knowledge is explicitly multidimensional; as operationalized in
discipline-specific, student-specific items, it cannot help but be. Unfortunately,
psychometricians havelittle good news under these circumstances. Users must plan
to collect large datasets and employ complex scaling techniques. If measurement
endeavorslike these are to succeed, aswe think they must, thereis an urgent need
for more capacity on both fronts.

Next, theseresultshaveled usto think carefully about the multiple-choiceformat.
Results from our cognitive interviews suggest that test-taking and mathematical
reasoning helped respondentsarrive at the correct answer. Thereisalso apossibility,
not examined in these retrospective cognitiveinterviews, that theitems*“taught” the
content, essentially causing an “aha’ moment for many teachers. In fact, we failed
to write—and teachers failed to select—outright “wrong” answers to our items.
During writing, wefound that answer choicesweintended to bewrong often seemed
absurd, even to those with little knowledge of students. Other “wrong” answers had
agrain of truth to them, making it difficult to penalize respondentswho selected them.

This suggests that a possible direction for future item development in this and
similar domains might be to invest in open-ended items like Appendix item 4.
Unfortunately, these measures require that they be scored by hand before scaling,
aconsiderable expense for large-scal e studies. And we argue that thereis need for
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measuresfor such studies: currently, educationa economists are using val ue-added
modelsto determinewhat makes effectiveteachers. It isvitally important for class-
room-based research to contribute both conceptions of good teaching and measures
of good teaching to this work. Although we did not find an item among the six
studied intensively herethat met all of our proof-of-concept criteriafor the multiple-
choice format, we do have promising itemsin our larger pool. Investigating these
itemsviainterview and open-ended task studiesiscritical.

Finally, this study suggests the importance of using explicit criteria to guide
measure conceptualization and development. We could have easily written items,
administered them to teachers, and reported that we detected MPDI successin a
pre-post analysis. Instead, we used the criteria to uncover significant problemsin
both the conceptualization and measurement of this domain. Rather than see our
effort end here, however, we chose to use our results to demonstrate the benefits
of using such an approach and to note aspects of the domain that we believe will
prove useful to other researchers and future studies.
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APPENDIX: SAMPLE ITEMS

1.You are working individually with Bonny, and you ask her to count out 23
checkers, which she does successfully. You then ask her to show you how
many checkers are represented by the 3 in 23, and she counts out 3 checkers.
Then you ask her to show you how many checkers are represented by the 2 in
23, and she counts out 2 checkers. What problem is Bonny having here? (Mark
ONE answer.)

a. Bonny doesn’t know how large 23 is.

b. Bonny thinksthat 2 and 20 are the same.

c¢. Bonny doesn’'t understand the meaning of the placesin the numeral 23.
d. All of the above.

2. Mrs. Jackson is getting ready for the state assessment, and is planning mini-
lessons for students focused on particular difficulties that they are having with
adding columns of numbers. To target her instruction more effectively, shewants
to work with groups of students who are making the same kind of error, so she
looks at arecent quiz to see what they tend to do. She sees the following three
student mistakes:

1 1 1
38 45 32
49 37 14
+65 +29 +19
142 101 64

D ) (1)

Which have the same kind of error? (Mark ONE answer.)

alandll

b. 1 and Il

c. lland Il

d. I, 11, and Il

3. Mr. Fitzgerald has been hel ping his students|earn how to compare decimals. He

istrying to devise an assignment that shows him whether his students know how
to correctly put a series of decimals in order. Which of the following sets of
numbers will best suit that purpose? (Mark ONE answer.)

a .5 7 .01 114
b. .60 2.53 3.14 45
c. 6 4.25 .565 25

d. Any of these would work well for this purpose. They all require the
studentsto read and interpret decimals.

4. Consider Jill’s response to a subtraction problem. How might she have gotten
an answer likethis?
51
=18
47



